S T?AWBE??Y

Ei /strowberrydevelobers
Ul /strowberry_app

for move visit:
Straowberrydevelopers.weelbly.com

UNIT VII:
INPUT & OUTPUT UNIT

Agenda

e |/O Devices

e Disk drive

e Device Drivers

e |/O Modules: Assignment 2
e Programmed I/O

e |nterrupt

e DMA

e |/0O Channels & Processors

|/O Devices: Categories

e Human readable
— Used to communicate with the user
— Printers
— Video display terminals
— Display
— Keyboard
— Mouse

e Machine readable
— Used to communicate with electronic equipment
— Disk and tape drives
— Sensors
— Controllers
— Actuators
e Communication
— Used to communicate with remote devices
— Digital line drivers
— Modems

External Device Block Diagram

Control A Status A Data bits

signals from signals to to and from
1/0 module 1/0 module 1/0 module

Y Y

Control Buffer
Logic
Transducer
A

Data (device-unique)
to and from
Y environment

Input/Output Problems

e Wide variety of peripherals

— Delivering different amounts of data
— At different speeds
— In different formats

e All slower than CPU and RAM

e Need I/O modules

Input/Output Module

e Interface to CPU and Memory

e Interface to one or more peripherals

Address Lines
- System
Data Lines Bus
Control Lines
/0 Module
Links to
peripheral

devices

Generic Model of I/O Module

Input Output Techniques

With programmed /O, data are exchanged between the processor and
the 1/0O module.

When the processor issues a command to the I/O module, it must wait
until the I/0 operation is complete.

If the processor is faster than the I/O module, this is wasteful of processor
time.
With interrupt-driven 1/O, the processor issues an /O command,

continues to execute other instructions, and is interrupted by the 1/0
module when the latter has completed its work.

In direct memory access (DMA), the I/O module and main memory
exchange data directly, without processor involvement.

No Interrupts Use of Interrupts

1/0-to-memory transfer through processor | Programmed /O Interrupt-driven I/O

Direct I/0-to-memory transfer Direct memory access (DMA)

Three Techniques for Input of a Block of Data

Issue Read
—» command to| CPU — 1/O
|/0O module

Read status
of 1/0
module

I/l0 - CPU

Error
condition

Read word
from 1/0O
Module

I/l0 - CPU

Write word

: CPU — memory
into memory

Next instruction
(a) Programmed 1/0O

Issue Read gCPU — I/0
—» command to Do something

/0 module [~ Pelse

Read status g _ - - Interrupt

of 110

module /0 - CPU
Error
condition

Read word

from 1/O /0 - CPU

Module

Wnte L CPU — memory

into memory

Next instruction
(b) Interrupt-driven I/O

PU — DMA
Do something
= Pelse

Issue Read
block comman
to I/0O module

Read status
of DMA
module

- == Interrupt

DMA — CPU

Next instruction

(c) Direct memory access

Programmed |/O - detail

e CPU requests I/O operation

e |/O module performs operation

e |/O module sets status bits

e CPU checks status bits periodically

e |/O module does not inform CPU directly
e |/O module does not interrupt CPU

e CPU may wait or come back later

Programmed 1/O : /O Commands

e To execute an |/O-related instruction, the processor issues an address,
specifying the particular I/O module and external device, and an /O
command. There are four types of /O commands that an I/O module may
receive when it is addressed by a processor:

— Control: Used to activate a peripheral and tell it what to do.

— Test: Used to test various status conditions associated with an /O
module and its peripherals.

— Read: Causes the I/0O module to obtain an item of data from the
peripheral and place it in an internal buffer. The processor can then
obtain the data item by requesting that the I/O module place it on the
data bus.

— Write: Causes the |/O module to take an item of data (byte or word)
from the data bus and subsequently transmit that data item to the
peripheral.

/0 Mapping

e Memory mapped I/O

— Devices and memory share an address space

— 1/0 looks just like memory read/write
— No special commands for |I/0O

— Large selection of memory access commands available

e |solated I/O

— Separate address spaces
— Need I/O or memory select lines
— Special commands for /0

— Limited set

Memory Mapped and Isolated 1/0

7 6 5§ 4 3 2 1 0

516 Keyboard input data register

7 6 5 4 3 2 1 0

Keyboard input status
517 and control register
T—1 = ready T—Set to1to
0 = busy start read
ADDRESS INSTRUCTION OPERAND COMMENT ADDRESS INSTRUCTION OPERAND COMMENT

200 Load AC nqe Load accumulator 200 Load I/0 5 Initiate keyboard read

Store AC 517 Initiate keyboard read 201 Test I/O 5 Check for completion
202 Load AC 517 Get status byte Branch Not Ready 201 Loop until complete

Branch if Sign = 0 202 Loop until ready In 5 Load data byte

Load AC 516 Load data byte

(b) Isolated 1/O

(a) Memory-mapped /O

Interrupt Driven 1/0O

e Overcomes CPU waiting

e No repeated CPU checking of device
e |/O module interrupts when ready

Interrupt Driven 1/O: Basic Operation

e CPU issues read command

e |/O module gets data from peripheral whilst CPU does other work
e |/O module interrupts CPU

e CPU requests data

e |/O module transfers data

A0mMpile imnmterrup Hardware

Processing

——A———

Device controller or
other system hardwar
issues an interrupt

Processor finishes
execution of current
instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PS
and PC onto control
stack

Processor loads ne

PC value based on
interrupt

Software

—A—

.

Save remainder of
process state
information

Process interrupt

Restore process stat

information

Restore old PSW
and PC

CPU Viewpoint

e |ssue read command
e Do other work
e Check for interrupt at end of each instruction cycle
e If interrupted:-
— Save context (registers)
— Process interrupt
— Fetch data & store

Example:

Changes in Memory and Registers for an Interrupt

A user program is interrupted
after the instruction at
location N.

The contents of all of the
registers plus the address of
the next instruction (N+1) are
pushed onto the stack.

The stack pointer is updated
to point to the new top of
stack, and the program
counter is updated to point
to the beginning of the
interrupt service routine.
When interrupt processing is
complete, the saved register
values are retrieved

from the stack and restored
to the registers

T-M
Control 3 Y
Stack . |
' i
[N+
Program
Counter
Yy [Stard L
Interrupt General
Service Registers
Y + L [Retarn| Routine
Stack
Pointer
Processor |
T-M
N +N1 User's
Program
Main
Memory

(a) Interrupt occurs after instruction
at location N

T

T-M
N+ 1
Control
Stack
1
> Y+L]|
Program
Counter
Start L
Y Interrupt General
Service Registers
Y + L [Retum| Routine
Stack
Pointer
Processor
N +N1 User's
Program
Main
Memory

(b) Return from interrupt

Design Issues

e How do you identify the module issuing the interrupt?

e How do you deal with multiple interrupts?
— i.e. an interrupt handler being interrupted

ldentifying Interrupting Module (1)

e Different line for each module
— PC
— Limits number of devices
e Software poll
— CPU asks each module in turn

— Slow

ldentifying Interrupting Module (2)

e Daisy Chain or Hardware poll
— Interrupt Acknowledge sent down a chain
— Module responsible places vector on bus
— CPU uses vector to identify handler routine
e Bus Master
— Module must claim the bus before it can raise interrupt
— e.g. PCl & SCSI

Multiple Interrupts

e Each interrupt line has a priority

e Higher priority lines can interrupt lower priority lines
e If bus mastering only current master can interrupt

Direct Memory Access

e DMA unit takes the control of the system from the CPU to transfer data to
and from memory over the system bus

e Cycle stealing is used to transfer data on the system bus because the
DMA unit in effect steals a bus cycle.

e The instruction cycle is suspended so data can be transferred
e The CPU pauses one bus cycle
e No interrupts occur

— Do not save context

DMA Operation

e CPU tells DMA controller:-
— Read/Write
— Device address

— Starting address of memory block for data
— Amount of data to be transferred

e CPU carries on with other work

e DMA controller deals with transfer

e DMA controller sends interrupt when finished

Direct Memory Access

* The DMA technique works as follows. When the processor wishes to read
or write a block of data, it issues a command to the DMA module by
sending to the DMA module the following information:

—Whether a read/write 1s requested, using the read/write
control line between the processor and the DMA module.

—The address of the I/0 device 1s involved, communicated
on the data lines.

—The starting location in memory is communicated on the
data lines and stored by the DMA module in its address
register.

—The number of words to read/written 1s communicated on
the data lines and stored 1n the data count register.

DMA

Data Lines ¢

Address Lines ¢

DMA Request 4
DMA Acknowledge
Interrupt 4

Read

Write

Figure 11.2 Typical DMA Block Diagram

DMA

e Cycle stealing causes the CPU to execute more slowly

e Number of required busy cycles can be cut by integrating the DMA and I/
O functions

e Path between DMA module and I/O module that does not include the
system bus

Time

—
Instruction Cycle
e . »
Processor | Processor | Processor | Processor | Processor Processor
Cycle Cycle Cycle Cycle Cycle Cycle
I s s e s e >
Fetch Decode Fetch Execute Store Process
Instruction | Instruction | Operand | Instruction Result Interrupt
A A
DMA Interrupt
Breakpoints Breakpoint

Figure 11.3 DMA and Interrupt Breakpoints During an Instruction Cycle

DMA configurations

N R O e

(@) Single-bus, detached DMA

Figure 11.4 Alternative DMA Configurations

 All the modules share the same system bus

 The configuration is inexpensive, but inefficient.

» As with processor-controlled programmed 1/O, each transfer
of a word consume 2 bus cycles (transfer request + transfer)

DMA

(b) Single-bus, Integrated DMA-1/O

Figure 11.4 Alternative DMA Configurations

DMA

System bus

Exe) o | ==

1/O bus

EX N N

{¢) /O bus

Figure 11.4 Alternative DMA Configurations

/O Channels & Processors

e |/O devices getting more sophisticated

e e.g. 3D graphics cards
e CPU instructs I/O controller to do transfer
e |/0O controller does entire transfer
* Improves speed
— Takes load off CPU
— Dedicated processor is faster

/O Channel Architecture: Selector

e Selector channel controls multiple high-speed devices and, at any one
time, is dedicated to the transfer of data with one of those devices.

e Each device, is handled by a controller, or I/O module.

Thus, the 1/0 channel selects one device and effects the data transfer.

Data and
address channel

to main memory

——>

Control signal

Selector
channel

path to CPU

1/0
controller

O dv

(a) Selector

/0
controller

/0 Channel Architecture: Multiplexor

e A multiplexor channel can handle I/O with multiple devices at the same
time.

e For low-speed devices, a byte multiplexor accepts or transmits characters
as fast as possible to multiple devices.

 For high-speed devices, a block multiplexor interleaves blocks of data
from several devices. Data and

address channel
to main memory

Multiplexor

channel
——--

Control signal

path to CPU cee 1/0
controller

/0
controller

/0
controller

/0
controller

(b) Multiplexor

S T?AWBE??Y

Ei /strowberrydevelobers
Ul /strowberry_app

for move visit:
Straowberrydevelopers.weelbly.com

