

UNIT	VII:		
INPUT	&	OUTPUT	UNIT	

Agenda	
•  I/O	Devices	
•  Disk	drive	
•  Device	Drivers	
•  I/O	Modules:	Assignment	2	
•  Programmed	I/O	
•  Interrupt	
•  DMA	
•  I/O	Channels	&	Processors	

I/O	Devices:	Categories	
•  Human	readable	

— Used	to	communicate	with	the	user	
— Printers	
— Video	display	terminals	

–  Display	
–  Keyboard	
–  Mouse	

•  Machine	readable	
— Used	to	communicate	with	electronic	equipment	
— Disk	and	tape	drives	
—  Sensors	
— Controllers	
— Actuators	

•  Communica;on	
— Used	to	communicate	with	remote	devices	
— Digital	line	drivers	
— Modems	

	

External	Device	Block	Diagram	

Input/Output	Problems	
•  Wide	variety	of	peripherals	

— Delivering	different	amounts	of	data	
— At	different	speeds	
—  In	different	formats	

•  All	slower	than	CPU	and	RAM	
•  Need	I/O	modules	

Input/Output	Module	
•  Interface	to	CPU	and	Memory	
•  Interface	to	one	or	more	peripherals	

Generic	Model	of	I/O	Module	

Input	Output	Techniques	
•  With	programmed	 I/O,	data	 are	 exchanged	 between	 the	 processor	 and	

the	I/O	module.		
•  When	 the	processor	 issues	a	 command	 to	 the	 I/O	module,	 it	must	wait	

unVl	the	I/O	operaVon	is	complete.		
•  If	the	processor	is	faster	than	the	I/O	module,	this	is	wasteful	of	processor	

Vme.	
•  With	 interrupt-driven	 I/O,	 the	 processor	 issues	 an	 I/O	 command,	

conVnues	 to	 execute	 other	 instrucVons,	 and	 is	 interrupted	 by	 the	 I/O	
module	when	the	laWer	has	completed	its	work.	

•  In	 direct	 memory	 access	 (DMA),	 the	 I/O	 module	 and	 main	 memory	
exchange	data	directly,	without	processor	involvement.	

Three	Techniques	for	Input	of	a	Block	of	Data	

Programmed	I/O	-	detail	
•  CPU	requests	I/O	operaVon	
•  I/O	module	performs	operaVon	
•  I/O	module	sets	status	bits	
•  CPU	checks	status	bits	periodically	
•  I/O	module	does	not	inform	CPU	directly	
•  I/O	module	does	not	interrupt	CPU	
•  CPU	may	wait	or	come	back	later	

Programmed	I/O	:	I/O	Commands	
•  To	 execute	 an	 I/O-related	 instrucVon,	 the	 processor	 issues	 an	 address,	

specifying	 the	 parVcular	 I/O	 module	 and	 external	 device,	 and	 an	 I/O	
command.	There	are	four	types	of	I/O	commands	that	an	I/O	module	may	
receive	when	it	is	addressed	by	a	processor:	
— Control:	Used	to	acVvate	a	peripheral	and	tell	it	what	to	do.		
— Test:	Used	 to	 test	 various	 status	 condiVons	 associated	 with	 an	 I/O	

module	and	its	peripherals.	
— Read:	 Causes	 the	 I/O	 module	 to	 obtain	 an	 item	 of	 data	 from	 the	

peripheral	and	place	 it	 in	an	 internal	buffer.	The	processor	can	 then	
obtain	the	data	item	by	requesVng	that	the	I/O	module	place	it	on	the	
data	bus.	

— Write:	Causes	the	I/O	module	to	take	an	item	of	data	(byte	or	word)	
from	 the	 data	 bus	 and	 subsequently	 transmit	 that	 data	 item	 to	 the	
peripheral.	

I/O	Mapping	
•  Memory	mapped	I/O	

— Devices	and	memory	share	an	address	space	
—  I/O	looks	just	like	memory	read/write	
— No	special	commands	for	I/O	

–  Large	selecVon	of	memory	access	commands	available	

•  Isolated	I/O	
— Separate	address	spaces	
— Need	I/O	or	memory	select	lines	
— Special	commands	for	I/O	

–  Limited	set	

Memory	Mapped	and	Isolated	I/O	

Interrupt	Driven	I/O	
•  Overcomes	CPU	waiVng	
•  No	repeated	CPU	checking	of	device	
•  I/O	module	interrupts	when	ready	

Interrupt	Driven	I/O:	Basic	OperaVon	
•  CPU	issues	read	command	
•  I/O	module	gets	data	from	peripheral	whilst	CPU	does	other	work	
•  I/O	module	interrupts	CPU	
•  CPU	requests	data	
•  I/O	module	transfers	data	

Simple	Interrupt	
Processing	

CPU	Viewpoint	
•  Issue	read	command	
•  Do	other	work	
•  Check	for	interrupt	at	end	of	each	instrucVon	cycle	
•  If	interrupted:-	

— Save	context	(registers)	
— Process	interrupt	

–  Fetch	data	&	store	

Example:	
Changes	in	Memory	and	Registers	for	an	Interrupt	

A	user	program	is	interrupted	
a^er	 the	 instrucVon	 at	
locaVon	N.		
The	 contents	 of	 all	 of	 the	
registers	 plus	 the	 address	 of	
the	next	instrucVon	(N+1)	are	
pushed	onto	the	stack.		
The	 stack	 pointer	 is	 updated	
to	 point	 to	 the	 new	 top	 of	
stack,	 and	 the	 program	
counter	 is	 updated	 to	 point	
to	 the	 beginning	 of	 the	
interrupt	service	rouVne.	
When	interrupt	processing	is	
complete,	the	saved	register	
values	are	retrieved	
from	the	stack	and	restored	
to	the	registers	

Design	Issues	
•  How	do	you	idenVfy	the	module	issuing	the	interrupt?	
•  How	do	you	deal	with	mulVple	interrupts?	

—  i.e.	an	interrupt	handler	being	interrupted	

IdenVfying	InterrupVng	Module	(1)	
•  Different	line	for	each	module	

— PC	
— Limits	number	of	devices	

•  So^ware	poll	
— CPU	asks	each	module	in	turn	
— Slow	

IdenVfying	InterrupVng	Module	(2)	
•  Daisy	Chain	or	Hardware	poll	

—  Interrupt	Acknowledge	sent	down	a	chain	
— Module	responsible	places	vector	on	bus	
— CPU	uses	vector	to	idenVfy	handler	rouVne	

•  Bus	Master	
— Module	must	claim	the	bus	before	it	can	raise	interrupt	
— e.g.	PCI	&	SCSI	

MulVple	Interrupts	
•  Each	interrupt	line	has	a	priority	
•  Higher	priority	lines	can	interrupt	lower	priority	lines	
•  If	bus	mastering	only	current	master	can	interrupt	

Direct	Memory	Access	
•  DMA	unit	takes	the	control	of	the	system	from	the	CPU	to	transfer	data	to	

and	from	memory	over	the	system	bus	
•  Cycle	 stealing	 is	 used	 to	 transfer	 data	 on	 the	 system	 bus	 because	 the	

DMA	unit	in	effect	steals	a	bus	cycle.	
•  The	instrucVon	cycle		is	suspended	so	data	can	be	transferred	
•  The	CPU	pauses	one	bus	cycle	
•  No	interrupts	occur	

— Do	not	save	context	

DMA	OperaVon	
•  CPU	tells	DMA	controller:-	

— Read/Write	
— Device	address	
— StarVng	address	of	memory	block	for	data	
— Amount	of	data	to	be	transferred	

•  CPU	carries	on	with	other	work	
•  DMA	controller	deals	with	transfer	
•  DMA	controller	sends	interrupt	when	finished	

Direct	Memory	Access	

•  The DMA technique works as follows.	When	the	processor	wishes	to	read	
or	 write	 a	 block	 of	 data,	 it	 issues	 a	 command	 to	 the	 DMA	 module	 by	
sending	to	the	DMA	module	the	following	informaVon:
— Whether a read/write is requested, using the read/write

control line between the processor and the DMA module.
— The address of the I/O device is involved, communicated

on the data lines.
— The starting location in memory is communicated	on	the	
data	 lines	 and stored by the DMA module in its address
register.

— The number of words to read/written is communicated	on	
the	data	lines	and stored in the data count register.

DMA	

DMA	
•  Cycle	stealing	causes	the	CPU	to	execute	more	slowly	
•  Number	of	required	busy	cycles	can	be	cut	by	integraVng	the	DMA	and	I/

O	funcVons	
•  Path	 between	 DMA	module	 and	 I/O	module	 that	 does	 not	 include	 the	

system	bus	

DMA	configuraVons	

•  All the modules share the same system bus
•  The configuration is inexpensive, but inefficient.
•  As with processor-controlled programmed I/O, each transfer
 of a word consume 2 bus cycles (transfer request + transfer)

DMA	

DMA	

I/O	Channels	&	Processors	
•  I/O	devices	gedng	more	sophisVcated	
•  e.g.	3D	graphics	cards	
•  CPU	instructs	I/O	controller	to	do	transfer	
•  I/O	controller	does	enVre	transfer	
•  Improves	speed	

— Takes	load	off	CPU	
— Dedicated	processor	is	faster	

I/O	Channel	Architecture:	Selector	
•  Selector	 channel	 controls	 mulVple	 high-speed	 devices	 and,	 at	 any	 one	

Vme,	is	dedicated	to	the	transfer	of	data	with	one	of	those	devices.		
•  Thus,	the	I/O	channel	selects	one	device	and	effects	the	data	transfer.		
•  Each	device,	is	handled	by	a	controller,	or	I/O	module.	

I/O	Channel	Architecture:	MulVplexor	
•  A	mul;plexor	 channel	can	handle	 I/O	with	mulVple	devices	at	 the	 same	

Vme.		
•  For	low-speed	devices,	a	byte	mul;plexor	accepts	or	transmits	characters	

as	fast	as	possible	to	mulVple	devices.	
•  For	 high-speed	 devices,	 a	 block	 mul;plexor	 interleaves	 blocks	 of	 data	

from	several	devices.	

