

UNIT	VI:	CONTROL	UNIT	

Agenda	
•  Control	Unit	micro	opera3ons	
•  Control	Unit	hardwired	implementa3on	
•  Micro	Programmed	control	
•  Micro	Instruc3on	Format	
•  Applica3ons	of	microprogramming	

Basic	Concept	

Micro-Opera3ons	
•  Instruc3on	execu3on	

Ø  execu3on	of	a	sequence	of	steps,	i.e.,	cycles	
•  Fetch,	Indirect,	Execute	&	Interrupt	cycles	
•  Cycle	-	a	sequence	of	micro-opera3ons	
•  Micro-opera3ons	

Ø  data	transfer	between	registers	
Ø  transfer	between	a	register	&	an	external	bus	
Ø  ALU	opera3on	

•  CU	causes	 the	processor	 to	step	 through	a	series	of	micro-opera3ons	 in	
the	proper	sequence	

•  CU	generates	 the	 control	 signals	 that	 cause	each	micro-opera3on	 to	be	
executed	

•  Micro-Opera3ons	are	the	atomic	opera3ons	of	the	Processor	
	

Cons3tuent	Elements	of	Program	Execu3on	

Registers	
•  Memory	Address	Register	(MAR)		

— Connected	to	address	lines	of	system	bus	
— Specifies	address	for	read	or	write	opera3on	

•  Memory	Buffer	Register	(MBR)		
— Connected	to	data	lines	of	system	bus	
— Holds	data	to	write	or	last	data	read	

•  Program	Counter	(PC)		
— Holds	address	of	next	instruc3on	to	be	fetched	

•  Instruc3on	Register	(IR)		
— Holds	last	instruc3on	fetched	

Fetch	Sequence	
•  Address	of	next	instruc3on	is	in	PC	
•  Address	(MAR)	is	placed	on	address	bus	
•  Control	unit	issues	READ	command	
•  Result	(data	from	memory)	appears	on	data	bus	
•  Data	from	data	bus	copied	into	MBR	
•  PC	incremented	by	1	(in	parallel	with	data	fetch	from	memory)	[micro-code	

RISC,	length	==	1]	
•  Data	(instruc3on)	moved	from	MBR	to	IR	
•  MBR	is	now	free	for	further	data	fetches	

Fetch	Cycle:	Sequence	of	events	
MAR (PC);

MBR <- (memory)
PC <- (PC) +1 IR <- (MBR)

Fetch	Cycle:	Sequence	of	events	
MAR (PC);

MBR <- (memory)
PC <- (PC) +1
IR <- (MBR)

Fetch	Sequence	(symbolic)	
•  t1: 	MAR	<-	(PC);	CU	issues	READ	command	

•  t2: 	MBR	<-	(memory) 	simultaneously	

	PC	<-	(PC)	+I 	 		

•  t3: 	IR	<-	(MBR)	
	where	tx	refers	to	the	3me	unit/clock	cycle	

			------------------	or	------------------	
•  t1: 	MAR	<-	(PC)	
•  t2: 	MBR	<-	(memory)	
•  t3: 	PC	<-	(PC)	+1		

	IR	<-	(MBR)	

Rules	for	Clock	Cycle	Grouping	
•  Proper	sequence	must	be	followed	

— MAR	<-	(PC)	must	precede	MBR	<-	(memory)	
•  Conflicts	must	be	avoided	

— Must	not	read	&	write	same	register	at	same	3me	
— MBR	<-	(memory)	&	IR	<-	(MBR)	must	not	be	in	same	cycle	

•  Also:		PC	<-	(PC)	+1	involves	addi3on	
— Must	use	ALU	
— Hence,	may	need	addi3onal	micro-opera3ons	

Indirect	Cycle	
•  Once	an	instruc3on	is	fetched,	the	next	step	is	to	fetch	source	operands.		
•  If	the	instruc3on	specifies	an	indirect	address,	then	an	indirect	cycle	must	precede	

the	execute	cycle	
	
	
	
	

•  MAR	contains	an	indirect	address	
•  MBR	contains	a	direct	address	
•  Result:	IR	is	placed	in	same	state	as	if	direct	addressing	had	been	used	originally	

Address A Opcode
Instruction

Memory

Operand

Pointer to operand

Indirect Addressing

t1:	MAR	←	(IR(Address))	
t2:	MBR	←	Memory	

t3:	IR(Address)	←	(MBR(Address))	

Indirect	Cycle	
•  The	address	field	of	the	instruc3on	is	transferred	to	the	MAR.	This	is	then	

used	to	fetch	the	address	of	the	operand.	
•  Finally,	the	address	field	of	the	IR	is	updated	from	the	MBR,	so	that	it	now	

contains	a	direct	rather	than	an	indirect	address.	
•  The	 IR	 is	 now	 in	 the	 same	 state	 as	 if	 indirect	 addressing	 had	 not	 been	

used,	and	it	is	ready	for	the	execute	cycle.		

Interrupt	Cycle	
•  At	 the	 comple3on	 of	 the	 execute	 cycle,	 a	 test	 is	 made	 to	 determine	

whether	any	enabled	 interrupts	have	occurred.	 If	 so,	 the	 interrupt	cycle	
occurs.	 The	 nature	 of	 this	 cycle	 varies	 greatly	 from	 one	 machine	 to	
another.		

•  In	 the	 first	 step,	 the	 contents	 of	 the	 PC	 are	 transferred	 to	 the	MBR,	 so	
that	they	can	be	saved	for	return	from	the	interrupt.	

•  Then	the	MAR	is	loaded	with	the	address	at	which	the	contents	of	the	PC	
are	to	be	saved,	and	the	PC	is	loaded	with	the	address	of	the	start	of	the	
interrupt-processing	 rou3ne.	 These	 two	 ac3ons	 may	 each	 be	 a	 single	
micro-opera3on.	the	final	step	is	to	store	the	MBR,	which	contains	the	old	
value	of	 the	PC,	 into	memory.	 The	processor	 is	 now	 ready	 to	begin	 the	
next	instruc3on	cycle.	

					t1:	MBR	←	(PC)	

 t2:	MAR	←	Save_Address	for	PC	content	
											PC	←	Rou3ne_Address	

 t3:	Memory	←	MBR	(actual	saving	of	the	PC	contents)	

Execute	Cycle	(ADD)	
•  Different	sequence	of	micro-operaEons	for		each	instrucEon	
	

•  ADD	R1,	X	-	add	the	contents	of	loca3on	X	to	Register	1	,	place	the	result	
in	R1	

	

•  t1: 	MAR	ß	(IR(address(X)))	
•  t2: 	MBR	ß	(Memory)	
•  t3: 	R1	ß	(R1)	+	MBR(loca3on	X)	
	
•  Note:	there	is	no	overlap	of	micro-operaEons	

Execute	Cycle	(ISZ)	
•  ISZ	X	-	increment	and	skip	if	zero	

— t1: 	MAR	ß	(IR(address(x))	
	

— t2: 	MBR	ß	(memory)	
	

— t3: 	MBR	ß	(MBR)	+	1	
	

— t4: 	memory	ß	(MBR)	
	

	 	 	if	(MBR)	==	0	then	PC	ß	(PC)	+	1	

	 	test	&	acEon	operaEon	is	one	micro	op	
	 	performed	during	Eme	unit	t4		

Execute	Cycle	(BSA)	–	subrou3ne	call	instruc3on	
•  BSA	X	-	Branch	and	save	address	

— Address	of	instrucEon	following	BSA	is	saved	in	X;	
	it	will	be	used	to	return	from	the	subrouEne	

— ExecuEon	conEnues	from	X+1	
	

— t1: 	MAR	ß	(IR(address(X))	
—  	 	 	MBR	ß	(PC)	-	address	of	next	instrucEon		

	 	 	 	 	 	in	the	sequence	
	BSA	X	branches	to	X+1	aXer	saving	return	address	to	locaEon	X	

— t2: 	PC	ß	(IR(address(X))	
—  	 	 	memory	ß	(MBR)	-	save	PC	contents	in	memory	

— t3: 	PC	ß	(PC)	+	1 	-	start	processing	from	X+1	

X : return address
X+1: start of subroutine
…
…
X+n: return from subroutine

Instruc3on	Cycle	
•  Each	phase	decomposed	into	sequence	of	elementary	micro-opera3ons	
•  E.g.	fetch,	indirect,	and	interrupt	cycles	
•  Execute	cycle	

— One	sequence	of	micro-opera3ons	for	each	opcode	
•  Need	to	3e	sequences	together	
•  Assume	new	2-bit	register	

—  Instruc3on	cycle	code	(ICC)	designates	which	part	of	cycle	processor	is	
in	
–  00:	Fetch	
–  01:	Indirect	
–  10:	Execute	
–  11:	Interrupt	

Flowchart	for	Instruc3on	Cycle	(Code)	
Operation of the Processor çè Performance of a Sequence of Micro-Operations

Indirect Cycle è Execute Cycle è next cycle depends upon the state of the system
Interrupt Cycle è Fetch Cycle è next cycle depends upon the state of the system

00: Fetch
01: Indirect
10: Execute
11: Interrupt

Hardwired	Implementa3on	
•  Control	unit	inputs	
•  Flags	and	control	bus	

— Each	bit	means	something	
•  Instruc3on	register	

— Op-code	causes	different	control	signals	for	each	different	instruc3on	
— Unique	logic	for	each	op-code	
— Decoder	takes	encoded	input	and	produces	single	output	
— n	binary	inputs	and	2n	outputs	

•  Clock	
— Repe33ve	sequence	of	pulses	
— Useful	for	measuring	dura3on	of	micro-ops	
— Must	be	long	enough	to	allow	signal	propaga3on	
— Different	control	signals	at	different	3mes	within	instruc3on	cycle	
— Need	a	counter	with	different	control	signals	for	t1,	t2	etc.	
	

Control	Unit	with	Decoded	Inputs	

Problems	With	Hard	Wired	Designs	
•  Complex	sequencing	&	micro-opera3on	logic	
•  Difficult	to	design	and	test	
•  Inflexible	design	
•  Difficult	to	add	new	instruc3ons	

Microinstruc3on	
•  An	 instruc3on	 that	 controls	 data	 flow	 and	 instruc3on-execu3on	

sequencing	 in	 a	 processor	 at	 a	 more	 fundamental	 level	 than	 machine	
instruc3ons.		

•  A	 series	 of	 microinstruc3ons	 is	 necessary	 to	 perform	 an	 individual	
machine	instruc3on.	

Microprogram	Example	

Microinstruction Format

EA is the effective address
Symbol OP-code Description

ADD 0000 AC ← AC + M[EA]
BRANCH 0001 if (AC < 0) then (PC ← EA)
STORE 0010 M[EA] ← AC
EXCHANGE 0011 AC ← M[EA], M[EA] ← AC

Computer instruction format

I Opcode
15 14 11 10

Address
0

Four computer instructions

F1 F2 F3 CD BR AD
3 3 3 2 2 7

F1, F2, F3: Microoperation fields
 CD: Condition for branching
 BR: Branch field
 AD: Address field

Micro-instruc3on	Types	
•  Each	 micro-instruc3on	 specifies	 single	 (or	 few)	 micro-opera3ons	 to	 be	

performed	
—  	(ver&cal	micro-programming)	

•  Each	 micro-instruc3on	 specifies	 many	 different	 micro-opera3ons	 to	 be	
performed	in	parallel	
— (horizontal	micro-programming)	

Horizontal	Micro-programming	
•  Wide	memory	word	
•  High	degree	of	parallel	opera3ons	possible	
•  Likle	encoding	of	control	informa3on	

Microinstruc3on	Format:	Horizontal	
—  1.	To	execute	this	microinstruc3on,	turn	on	all	the	control	lines	indicated	by	a	

1	 bit;	 leave	 off	 all	 control	 lines	 indicated	 by	 a	 0	 bit.	 The	 resul3ng	 control	
signals	will	cause	one	or	more	micro-opera3ons	to	be	performed.	

—  2.	 If	 the	 condi3on	 indicated	 by	 the	 condi3on	bits	 is	 false,	 execute	 the	 next	
microinstruc3on	in	sequence.	

—  3.	 If	 the	 condi3on	 indicated	 by	 the	 condi3on	 bits	 is	 true,	 the	 next	
microinstruc3on	to	be	executed	is	indicated	in	the	address	field.	

	

Microinstruc3on	Format:	Ver3cal	
Ver3cal	Microinstruc3on:	
•  Width	is	narrow	
•  Limited	ability	to	express	parallelism	
•  Considerable	encoding	of	 control	 informa3on	 requires	external	memory	

word	decoder	to	iden3fy	the	exact	control	line	being	manipulated	
•  In	 a	 ver3cal	 microinstruc3on,	 a	 code	 is	 used	 for	 each	 ac3on	 to	 be	

performed	[e.g	MAR								PC]	

Microprogrammed	Control	Unit	
•  The	set	of	microinstruc3ons	is	stored	in	the	control	memory.		
•  The	 control	 address	 register	 contains	 the	 address	 of	 the	 next	

microinstruc3on	to	be	read.	
•  When	 a	 microinstruc3on	 is	 read	 from	 the	 control	 memory,	 it	 is	

transferred	to	a	control	buffer	register.	
•  A	 sequencing	 unit	 that	 loads	 the	 control	 address	 register	 and	 issues	 a	

read	command.	

Microprogrammed	Control	Unit:	Func3oning	
1.	 To	 execute	 an	 instruc3on,	 the	 sequencing	 logic	
unit	issues	a	READ	command	to	the	control	memory.	
2.	The	word	whose	address	is	specified	in	the	control	
address	 register	 is	 read	 into	 	 the	 control	 buffer	
register.	
3.	 The	 content	 of	 the	 control	 buffer	 register	
generates	 control	 signals	 and	 nextaddress	
informa3on	for	the	sequencing	logic	unit.	
4.	The	sequencing	logic	unit	loads	a	new	address	into	
the	 control	 address	 register	 based	 on	 the	 next-
address	 informa3on	from	the	control	buffer	 register	
and	the	ALU	flags.	Depending	on	the	value	of	the	ALU	
flags	 and	 the	 control	 buffer	 register,	 one	 of	 three	
decisions	is	made	based	on	the	opcode	in	the	IR.	

—  Get	 the	 next	 instrucEon:	 Add	 1	 to	 the	
control	address	register.	

—  Jump	 to	 a	 new	 rouEne	 based	 on	 a	 jump	
microinstrucEon:	 Load	 the	 address	 field	 of	
the	 control	 buffer	 register	 into	 the	 control	
address	register.	(Interrupt)	

—  Jump	to	a	machine	instrucEon	rouEne:	Load	
the	 control	 address	 register(Indirect	
addressing)	

Organiza3on	of	
Control	Memory	

Wilkes:	Microprogrammed	Control	Unit	
•  Proposed	by	Wilkes	in	1951	
•  Matrix	par3ally	filled	with	diodes	
•  During	cycle,	one	row	ac3vated	

— Generates	signals	where	diode	present	
— First	part	of	row	generates	control	
— Second	generates	address	for	next	cycle	

Wilkes's	Microprogrammed	Control	Unit	

Advantages	and	Disadvantages	of	Microprogramming	
•  Simplifies	design	of	control	unit	

— Cheaper	
— Less	error-prone	

•  Slower	

Tasks	Done	By	Microprogrammed	Control	Unit	
•  MicroinstrucEon	 sequencing:	 Get	 the	 next	 microinstruc3on	 from	 the	

control	memory.	
•  MicroinstrucEon	 execuEon:	 Generate	 the	 control	 signals	 needed	 to	

execute	the	microinstruc3on.	

Microinstruc3on	sequencing:	Design	Considera3ons	
•  Size	of	microinstruc3ons	
•  Address	genera3on	3me	

— Determined	by	instruc3on	register	
–  Once	per	cycle,	aper	instruc3on	is	fetched	

— Next	sequen3al	address	
–  Common	in	most	designed	

— Branches	
–  Both	condi3onal	and	uncondi3onal	

Sequencing	Techniques	
•  Based	on	current	microinstruc3on,	condi3on	flags,	contents	of	IR,	control	

memory	address	must	be	generated	
•  Based	on	format	of	address	informa3on	

— Two	address	fields	
— Single	address	field	
— Variable	format	

Branch	Control	Logic:		
Two	Address	Fields	

Branch	Control	Logic:		
Single	Address	Field	
With	this	approach,	the	op3ons	for		
next		address	are	as	follows:	
•  Address	field	
•  Instruc3on	register	code	
•  Next	sequen3al	address	

Branch	Control	Logic:	Variable	Format	
Another	 approach	 is	 to	 provide	 for	 two	
en3rely	different	microinstruc3on	formats	
•  One	 bit	 designates	 which	 format	 is	

being	used.		
•  In	 one	 format,	 the	 remaining	 bits	 are	

used	to	ac3vate	control	signals.		
•  The	 next	 address	 is	 either	 the	 next	

sequen3al	 address	 or	 an	 address	
derived	from	the	instruc3on	register.	

•  In	the	other	format,	some	bits	drive	the	
branch	logic	module,	and	the	remaining	
bits	provide	the	address.	

•  With	 the	 second	 format,	 either	 a	
condi3onal	 or	 uncondi3onal	 branch	 is	
being	specified.		

One	disadvantage	of	 this	 approach	 is	 that	
one	 en3re	 cycle	 is	 consumed	 with	 each	
branch	 microinstruc3on.	 With	 the	 other	
approaches,	 address	 genera3on	 occurs	 as	
part	of	the	same	cycle.	
	

Address	Genera3on	

Explicit Implicit

Two-field Mapping

Unconditional Branch Addition

Conditional branch Residual control

Microinstruc3on	Execu3on	
•  The	cycle	is	the	basic	event	
•  Each	cycle	is	made	up	of	two	events	

— Fetch	
–  Determined	by	genera3on	of	microinstruc3on	address	

— Execute	
–  Effect	is	to	generate	control	signals	
–  Some	control	points	internal	to	processor	
–  Rest	go	to	external	control	bus	or	other	interface	

Control	Unit		
Organiza3on	

Microinstruc3on	Encoding:	Direct	Encoding	

Microinstruc3on	Encoding:	Indirect	Encoding	

Microinstruc3on	
Format:	Ver3cal	

Microinstruc3on	Format:	Horizontal	

Example:	LSI-I1	
Microinstruc3on	
Format	

