

UNIT	V:	CENTRAL	PROCESSING	UNIT	

Agenda	
•  Basic	Instruc1on	Cycle	&	Sets	
•  Addressing	
•  Instruc1on	Format	
•  Processor	Organiza1on	
•  Register	Organiza1on	
•  Pipeline	Processors	
•  Instruc1on	Pipelining	
•  Co-Processors	
•  RISC	computers	vs.	CISC	computers	–	Assignment	2	

Addressing	Modes	
•  Immediate	
•  Direct	
•  Indirect	
•  Register	
•  Register	indirect	
•  Displacement	
•  Stack	

Immediate	Addressing	
•  Operand	is	part	of	instruc1on	
•  e.g.	ADD	5	

— Add	5	to	contents	of	accumulator	
— 5	is	operand	

•  No	memory	reference	to	fetch	data	
•  Fast	
•  Limited	range	

Operand Opcode

Instruction

Direct	Addressing	
•  Address	field	contains	address	of	operand	
•  Effec1ve	address	(EA)	=	address	field	(A)	
•  e.g.		ADD	A	

—  Add	contents	of	cell	A	to	accumulator	
—  Look	in	memory	at	address	A	for	operand	

•  Single	memory	reference	to	access	data	
•  Limited	address	space	

Address A Opcode
Instruction

Memory

Operand

Indirect	Addressing	
•  Memory	cell	pointed	to	by	address	field	contains	the	address	of	(pointer	

to)	the	operand	

•  e.g.	ADD	(A)	
— Add	contents	of	cell	pointed	to	by	contents	of	A	to	accumulator	

Address A Opcode
Instruction

Memory

Operand

Pointer to operand

Register	Addressing	
•  Operand	is	held	in	register	named	in	address	filed	
•  EA	=	R	
•  Limited	number	of	registers	

Register Address R Opcode

Instruction

Registers

Operand

Register	Indirect	Addressing	
•  Operand	is	in	memory	cell	pointed	to	by	contents	of	register	R	

Register Address R Opcode
Instruction

Memory

Operand Pointer to Operand

Registers

Displacement	Addressing	
•  EA	=	A	+	(R)	
•  Address	field	hold	two	values	

— A	=	base	value	
— R	=	register	that	holds	displacement	

Register R Opcode
Instruction

Memory

Operand Pointer to Operand

Registers

Address A

+

Stack	Addressing	
•  Operand	is	(implicitly)	on	top	of	stack	
•  e.g.		

— ADD 	 Pop	 top	 two	 items	 from	 stack 	 	 	
	and	add	

Instruc1on	Formats	
•  Layout	of	bits	in	an	instruc1on	
•  Includes	opcode	
•  Includes	(implicit	or	explicit)	operand(s)	
•  Usually	more	than	one	instruc1on	format	in	an	instruc1on	set	

Instruc1on	Length	
•  Affected	by	and	affects:	

— Memory	size	
— Memory	organiza1on	
— Bus	structure	
— CPU	complexity	
— CPU	speed	

Alloca1on	of	Bits	
•  Number	of	addressing	modes	
•  Number	of	operands	
•  Register	versus	memory	
•  Number	of	register	sets	
•  Address	range	
•  Address	granularity	

Example:	PDP-10	Instruc1on	Format	

Example:	PDP-11	Instruc1on	Format	

Instruc1on	Cycle	
•  Fetch:	Read	the	next	instruc1on	from	memory	into	the	processor.	
•  Execute:	Interpret	the	opcode	and	perform	the	indicated	opera1on.	
•  Interrupt:	 If	 interrupts	 are	 enabled	 and	 an	 interrupt	 has	 occurred,	 save	

the	current	process	state	and	service	the	interrupt.	

Instruc1on	Cycle	with	Interrupts	

Instruc1on	Cycle	(with	Interrupts)	-			
State	Diagram	

Indirect	Cycle	
•  The	 main	 line	 of	 ac1vity	 consists	 of	 alterna1ng	 instruc1on	 fetch	 and	

instruc1on	execu1on	ac1vi1es.		
•  A]er	an	instruc1on	is	fetched,	it	is	examined	to	determine	if	any	indirect	

addressing	 is	 involved.	 If	 so,	 the	 required	 operands	 are	 fetched	 using	
indirect	addressing.	Following	execu1on,	an	 interrupt	may	be	processed	
before	the	next	instruc1on	fetch.	

Instruc1on	Cycle	State	Diagram	

Data	Flow	(Instruc1on	Fetch)	

PC Contains address
of the next instruction

Address moved to MAR

A
dd

re
ss

Control Unit requests
Memory read

R
es

ul
t

PC incremented by1

Result
copied

1

2

3

5

6

7

4

Data	Flow	(Indirect	Cycle)	
•  IR	is	examined	
•  If	indirect	addressing,	indirect	cycle	is	performed:	

Rightmost N bits of MBR
which contain the address
reference are transferred
to MAR

1

Control Unit requests
Memory read

2

Result (address of operand)
moved to MBR

3

Data	Flow	(Execute)	
•  May	take	many	forms	
•  Depends	on	instruc1on	being	executed	
•  May	include	

— Memory	read/write	
—  Input/Output	
— Register	transfers	
— ALU	opera1ons	

Data	Flow	(Interrupt	Cycle)	
•  The	current	contents	of	the	PC	must	be	saved	so	that	the	processor	can	

resume	normal	ac1vity	a]er	 the	 interrupt.	Thus,	 the	contents	of	 the	PC	
are	transferred	to	the	MBR	to	be	wri`en	into	memory.		

•  The	special	memory	loca1on	reserved	for	this	purpose	is	loaded	into	the	
MAR	from	the	control	unit.		

•  The	PC	is	loaded	with	the	address	of	the	interrupt	rou1ne.	As	a	result,	the	
next	instruc1on	cycle	will	begin	by	fetching	the	appropriate	instruc1on.	

Processor	Organiza1on	
•  CPU	must:	

— Fetch	 instruc=on:	 The	 processor	 reads	 an	 instruc1on	 from	memory	
(register,	cache,	main	memory).	

—  Interpret	 instruc=on:	The	 instruc1on	 is	 decoded	 to	 determine	what	
ac1on	is	required.	

— Fetch	data:	The	execu1on	of	an	instruc1on	may	require	reading	data	
from	memory	or	an	I/O	module.	

— Process	data:	The	execu1on	of	an	instruc1on	may	require	performing	
some	arithme1c	or	logical	opera1on	on	data.	

— Write	data:	The	 results	of	 an	execu1on	may	 require	wri1ng	data	 to	
memory	or	an	I/O	module.	

CPU	With	Systems	Bus	

CPU	Internal	Structure	

Register	Organiza1on	
•  User-visible	 registers:	 Enable	 the	 machine-	 or	 assembly	 language	

programmer	 to	minimize	main	memory	 references	by	op1mizing	use	of	
registers.	

•  Control	 and	 status	 registers:	 Used	 by	 the	 control	 unit	 to	 control	 the	
opera1on	of	the	processor	and	by	privileged,	opera1ng	system	programs	
to	control	the	execu1on	of	programs.	

User	Visible	Registers	
•  General	Purpose	Registers:	May	be	used	for	data	or	addressing	
•  Data	registers:	Used	only	to	hold	data	
•  Address	 registers:	Devoted	 to	 a	 par1cular	 addressing	mode.	 Examples-	

Index	registers,	Stack	pointer	
•  Condi=on	 codes:	 Bits	 set	 by	 the	 processor	 hardware	 as	 the	 result	 of	

opera1ons.		
— For	 example,	 an	 arithme1c	 opera1on	 may	 produce	 a	 posi1ve,	

nega1ve,	zero,	or	overflow	result.	In	addi1on	to	the	result	itself	being	
stored	in	a	register	or	memory,	a	condi1on	code	is	also	set.	The	code	
may	subsequently	be	tested	as	part	of	a	condi1onal	branch	opera1on.	

— Can	be	read	(implicitly)	by	programs	–	e.g.	Jump	if	zero	

	

Control	&	Status	Registers	
•  Program	 counter	 (PC):	 Contains	 the	 address	 of	 an	 instruc1on	 to	 be	

fetched	
•  Instruc=on	register	(IR):	Contains	the	instruc1on	most	recently	fetched	
•  Memory	 address	 register	 (MAR):	Contains	 the	 address	 of	 a	 loca1on	 in	

memory	
•  Memory	buffer	register	(MBR):	Contains	a	word	of	data	to	be	wri`en	to	

memory	or	the	word	most	recently	read	

Program	Status	Word	
•  Sign:	Contains	the	sign	bit	of	the	result	of	the	last	arithme1c	opera1on.	
•  Zero:	Set	when	the	result	is	0.	
•  Carry:	 Set	 if	 an	 opera1on	 resulted	 in	 a	 carry	 (addi1on)	 into	 or	 borrow	

(subtrac1on)	 out	 of	 a	 high-order	 bit.	 Used	 for	 mul1word	 arithme1c	
opera1ons.	

•  Equal:	Set	if	a	logical	compare	result	is	equality.	
•  Overflow:	Used	to	indicate	arithme1c	overflow.	
•  Interrupt	Enable/Disable:	Used	to	enable	or	disable	interrupts.	
•  Supervisor:	Indicates	whether	the	processor	is	execu1ng	in	supervisor	or	

user	 mode.	 Certain	 privileged	 instruc1ons	 can	 be	 executed	 only	 in	
supervisor	mode,	 and	 certain	 areas	 of	memory	 can	be	 accessed	only	 in	
supervisor	mode.	

Example	Register	Organiza1ons	

Pipeline	Processor	
•  Pipelining:	 A	 means	 of	 introducing	 parallelism	 into	 the	 essen1ally	

sequen1al	nature	of	a	machine	instruc1on	program.	
•  Example:	Instruc1on	Pipelining			
•  A	 processor	 which	 works	 on	 the	 property	 of	 parallelism	 is	 known	 as	

pipeline	processor.	

Pipelining	
•  Two	stages:	fetch	instruc1on	and	execute	instruc1on.		
•  The	 first	 stage	 fetches	 an	 instruc1on	 and	 buffers	 it.	 When	 the	 second	

stage	 is	 free,	 the	first	stage	passes	 it	 the	buffered	 instruc1on.	While	the	
second	stage	is	execu1ng	the	instruc1on,	the	first	stage	takes	advantage	
of	 any	 unused	memory	 cycles	 to	 fetch	 and	 buffer	 the	 next	 instruc1on.	
This	is	called	instruc(on	prefetch	or	fetch	overlap.		

•  Advantage:	
— This	 process	 will	 speed	 up	 instruc1on	 execu1on.	 If	 the	 fetch	 and	

execute	 stages	 were	 of	 equal	 dura1on,	 the	 instruc1on	 cycle	 1me	
would	be	halved.		

Pipelining	
•  Disadvantage:	

—  1.	The	execu1on	1me	will	generally	be	longer	than	the	fetch	1me.	Execu1on	
will	 involve	 reading	 and	 storing	 operands	 and	 the	 performance	 of	 some	
opera1on.	Thus,	the	fetch	stage	may	have	to	wait	for	some	1me	before	it	can	
empty	its	buffer.	

—  2.	A	condi1onal	branch	instruc1on	makes	the	address	of	the	next	instruc1on	
to	be	fetched	unknown.	Thus,	the	fetch	stage	must	wait	un1l	 it	receives	the	
next	instruc1on	address	from	the	execute	stage.	The	execute	stage	may	then	
have	to	wait	while	the	next	instruc1on	is	fetched.	

Pipelining	
•  A	simple	rule	for	the	above	problem:	

— When	a	condi1onal	branch	instruc1on	is	passed	on	from	the	fetch	to	
the	 execute	 stage,	 the	 fetch	 stage	 fetches	 the	 next	 instruc1on	 in	
memory	a]er	the	branch	instruc1on.	Then,	if	the	branch	is	not	taken,	
no	1me	is	lost.	If	the	branch	is	taken,	the	fetched	instruc1on	must	be	
discarded	and	a	new	instruc1on	fetched.	

Pipelining	
•  Fetch	instruc=on	(FI):	Read	the	next	expected	instruc1on	into	a	buffer.	
•  Decode	 instruc=on	 (DI):	 Determine	 the	 opcode	 and	 the	 operand	

specifiers.	
•  Calculate	operands	 (CO):	Calculate	 the	effec1ve	address	of	 each	 source	

operand.		
•  Fetch	operands	(FO):	Fetch	each	operand	from	memory.		
•  Execute	 instruc=on	 (EI):	Perform	 the	 indicated	 opera1on	 and	 store	 the	

result,	if	any,	in	the	specified	des1na1on	operand	loca1on.	
•  Write	operand	(WO):	Store	the	result	in	memory.		

Timing	Diagram:	Instruc1on	Pipeline	Opera1on	

Six-stage	pipeline	can	reduce	the	execu1on	1me	for	9	instruc1ons	from	54	1me	
units	to	14	1me	units.	(Assump1on:	All	stages	takes	equal	dura1on)	

Pipelining:	example	(condi1onal	branch)	
•  Assume	that	instruc1on	3	is	a	condi1onal	branch	to	instruc1on	15.		
•  Un1l	 the	 instruc1on	 is	 executed,	 there	 is	 no	 way	 of	 knowing	 which	

instruc1on	will	come	next.		
•  The	 pipeline,	 in	 this	 example,	 simply	 loads	 the	 next	 instruc1on	 in	

sequence	(instruc1on	4)	and	proceeds.	
•  This	 is	 not	 determined	 un1l	 the	 end	 of	 1me	 unit	 7.	 At	 this	 point,	 the	

pipeline	must	be	cleared	of	instruc1ons	that	are	not	useful.		
•  During	1me	unit	8,	instruc1on	15	enters	the	pipeline.		
•  No	 instruc1ons	 complete	 during	 1me	 units	 9	 through	 12;	 this	 is	 the	

performance	 penalty	 incurred	 because	 we	 could	 not	 an1cipate	 the	
branch.	

The	Effect	of	a	Condi1onal	Branch	on	Instruc1on	
Pipeline	Opera1on	

Six	Stage	Instruc1on	Pipeline	

Alterna1ve	Pipeline	Depic1on	

Fig	b:	The	pipeline	 is	 full	at	1mes	6	and	7.	At	1me	7,	 instruc1on	3	 is	 in	the	execute	stage	and	
executes	a	branch	to	instruc1on	15.	At	this	point,	instruc1ons	I4	through	I7	are	flushed	from	the		
pipeline,	so	that	at	1me	8,	only	two	instruc1ons	are	in	the	pipeline,	I3	and	I15.	

Speedup	Factors	
with	Instruc1on	
Pipelining	

Pipeline	Hazards	
•  A	 pipeline	 hazard	 occurs	 when	 the	 pipeline,	 or	 some	 por1on	 of	 the	

pipeline,	 must	 stall	 because	 condi1ons	 do	 not	 permit	 con1nued	
execu1on.	 Such	 a	 pipeline	 stall	 is	 also	 referred	 to	 as	 a	pipeline	 bubble.	
There	are	three	types	of	hazards:	

Resource Hazards

Data Hazards

Control Hazards

Resource	Hazard	
•  A	 resource	 hazard	 occurs	 when	 two	 (or	 more)	 instruc1ons	 that	 are	

already	 in	 the	 pipeline	 need	 the	 same	 resource.	 The	 result	 is	 that	 the	
instruc1ons	must	be	executed	 in	serial	 rather	than	parallel	 for	a	por1on	
of	the	pipeline.	

Resource	Hazard:	Example	

Assume	that	the	source	operand	
for	 instruc1on	 I1	 is	 in	 memory,	
rather	than	a	register.	Therefore,	
the	fetch	instruc1on	stage	of	the	
pipeline	must	 idle	 for	 one	 cycle	
before	beginning	 the	 instruc1on	
fetch	for	instruc1on	I3.	
Assume	 that	 all	 other	 operands	
are	in	registers.	

Now assume that main memory
has a single port. In this case, an
operand read to or write from
memory cannot be performed in
parallel with an instruction fetch.

Data	Hazard	
•  A	data	hazard	occurs	when	there	is	a	conflict	in	the	access	of	an	operand	

loca1on.	 In	 general	 terms,	 we	 can	 state	 the	 hazard	 in	 this	 form:	 Two	
instruc1ons	in	a	program	are	to	be	executed	in	sequence	and	both	access	
a	par1cular	memory	or	register	operand.	

•  If	 the	 two	 instruc1ons	 are	 executed	 in	 strict	 sequence,	 no	 problem	
occurs.	However,	 if	 the	 instruc1ons	are	executed	 in	a	pipeline,	then	 it	 is	
possible	for	the	operand	value	to	be	updated	in	such	a	way	as	to	produce	
a	 different	 result	 than	 would	 occur	 with	 strict	 sequen1al	 execu1on.	 In	
other	words,	the	program	produces	an	incorrect	result	because	of	the	use	
of	pipelining.	

Data	Hazard:	Example	
•  As	an	example,	consider	the	following	x86	machine	instruc1on	sequence:	

	ADD	EAX,	EBX	/*	EAX	=	EAX	+	EBX	
	SUB	ECX,	EAX	/*	ECX	=	ECX	-	EAX	

•  The	ADD	instruc1on	does	not	update	register	EAX	un1l	the	end	of	stage	5,	which	
occurs	at	clock	cycle	5.		

•  But	 the	 SUB	 instruc1on	 needs	 that	 value	 at	 the	 beginning	 of	 its	 stage	 2,	which	
occurs	at	clock	cycle	4.	

•  To	maintain	correct	opera1on,	the	pipeline	must	stall	for	two	clocks	cycles.	
•  Thus,	a	data	hazard	results	in	inefficient	pipeline	usage.	

Data	Hazard:	Types	

 WAR

 WAW

Data	Hazard:	Types	

Control	Hazards	
•  A	 control	 hazard,	 also	 known	 as	 a	 branch	 hazard,	 occurs	 when	 the	

pipeline	makes	the	wrong	decision	on	a	branch	predic1on	and	therefore	
brings	instruc1ons	into	the	pipeline	that	must	subsequently	be	discarded.	

Co-Processors	
•  A	coprocessor	is	a	computer	processor	used	to	supplement	the	func1ons	

of	 the	 primary	 processor	 (the	 CPU).	 Opera1ons	 performed	 by	 the	
coprocessor	may	be	floa1ng	point	arithme1c,	graphics,	signal	processing,	
string	processing,	encryp1on	or	I/O	Interfacing	with	peripheral	devices.	

