


UNIT	IV:	DATA	PATH	DESIGN	



Agenda	
•  Introduc/on	
•  Fixed	Point	Arithme/c	

— Addi/on		
— Subtrac/on	
— Mul/plica/on	&	Serial	mul/plier	
— Division	&	Serial	Divider	
— Two’s	Complement	(Addi/on,	Subtrac/on)	

•  Booth’s	algorithm	
•  Design	of	basic	serial	adders	
•  Serial	&	parallel(ripple)	Subtractors	
•  High	speed	adders	
•  Floa/ng	Point	Arithme/c	

— Addi/on	&	Subtrac/on	
— Guard,	Round	&	S/cky	bits	
— Mul/plica/on	&	Division	

•  Combina/onal	&	Sequen/al	ALU:	Assignment	2	



Data	Representa/on	



Fixed	Point	Numbers	



Fixed	Point	Numbers:	Decimal	to	Binary	Conversion	



Fixed	Point	Numbers:	Unsigned	Integers	



Signed	Integers	



Fixed	Point	Arithme/c	
•  Four	basic	arithme/c	instruc/ons:	

— Addi/on	
— Subtrac/on	
— Mul/plica/on		
— Division	



Addi/on	



Addi/on	



Subtrac/on	



Subtrac/on:	Example	



Mul/plica/on	



Mul/plica/on	Example	



Mul/plica/on	Example	
• Multiplication of two 4-bit unsigned binary integers produces 

an 8-bit result.

• Multiplication of two 4-bit signed binary integers produces 
only a 7-bit result (each operand reduces to a sign bit and a 
3-bit magnitude for each operand, producing a sign-bit and 
a 6-bit result).



Mul/plica/on:	A	serial	Mul/plier	



Mul/plica/on:	Example	



Division:	Example	



Division:	Example	



Division:	Example	of	Base	2		

• (7 / 3 = 2)10 with a remainder R of 1.

• Equivalently, (0111/ 11 = 10)2 with a remainder R of 1.



Sign-Magnitude	
•  LeV	most	bit	is	sign	bit	
•  0	means	posi/ve	
•  1	means	nega/ve	
•  +18	=	00010010	
•  	-18	=	10010010	
•  Problems	

— Need	to	consider	both	sign	and	magnitude	in	arithme/c	
— Two	representa/ons	of	zero	(+0	and	-0)	



Two’s	Complement:	Signed	Integers	
• 	Numbers	are	added	or	subtracted	on	the	number	circle	by	traversing	clockwise	

for	addi/on	and	counterclockwise	for	subtrac/on.		

•		Unlike	the	number	line	(a)	where	overflow	never	occurs,	overflow	occurs	when	
a	transi/on	is	made	from	+3	to	-4	while	proceeding	around	the		number	circle	
when	adding,	
or	from	-4	to	+3	while	
subtrac/ng.	

2-bits 0,1,2,3 

3-bits 0-7 0-3, (-1)-(-4) 

4-bits 0-15 0-7, (-1)-(-8) 



Two’s	Complement:	Unsigned	Integers	



Two’s	Complement	



Two’s	Complement	



Two’s	Complement:	Addi/on	



Two’s	Complement:	Subtrac/on	



Two’s	Complement:	Subtrac/on	



Addi/on	and	Subtrac/on	
•  Normal	binary	addi/on	
•  Monitor	sign	bit	for	overflow	

•  Take	twos	compliment	of	substahend	and	add	to	minuend	
—  i.e.	a	-	b	=	a	+	(-b)	

•  So	we	only	need	addi/on	and	complement	circuits	



Hardware	for	Addi/on	and	
Subtrac/on	



2's	complement	of	floa/ng	point	numbers:	Example	



2's	complement	of	floa/ng	point	numbers	
To	create	2's	complement:	
• 	Take	the	number	given	by	you	
010111.1100.	
• 	Start	on	the	least	significant	bit	and	locate	the	first	1	marked	red	
010111.1100.		
• Then	flip	every	bit	aVer	that	first	one	(1	change	to	zero	and	vice	
verse)	010111.1100->	101000.0100	



2's	complement	of	floa/ng	point	numbers:	Example	
•  Example:	
•  2.50	–	6.75	=	-3.75	



Conversion	of	2’s	complement	to	decimal	



Booth’s	Algorithm	:Mul/plying	Nega/ve	Numbers	



Example	of	Booth’s	Algorithm	

Multiplicand (M) = 0111 = 7 
Multiplier (Q) = 0011 = 3 

Q0	 Q-1	
	

Opera8on	

0	 0	 ShiVing	

1	 1	 ShiVing	

1	 0	 A	=	A	–	M		
ShiVing	

0	 1	 A	=	A	+	M		
ShiVing	

No.	of	cycles	=	No.	of	bits	



Half	Adder	
•  It	adds	two	1	bits	but	has	no	provision	to	 include	the	carry	output	 from	

previous	bit	posi/on.	



Full	Adder	
•  It	 is	a	combina/onal	circuit	 that	 forms	 the	arithme/c	sum	of	 three	 input	bits.	 It	

consists	of	 three	 inputs	&	 two	outputs.	 Two	 input	 variables	as	A	&	B.	 The	 third	
input	Cin	represents	the	carry	from	the	previous	bit	posi/on.	



Full	Subtractor	
• Truth table and schematic symbol for a ripple-borrow 

subtractor:



Serial	Adder	
•  A	serial	adder	has	only	a	single	bit	adder.	It	is	used	to	perform	addi/on	of	

two	 numbers	 sequen/ally	 bit	 by	 bit.	 Addi/on	 of	 one	 bit	 posi/on	 takes	
one		clock	cycle.	Thus	for	n-bit	serial	adder,	n	clock	cycles	are	required	to	
complete	 the	addi/on	process	&	get	 the	 result.	At	each	cycle,	 the	carry	
produced	by	a	bit	posi/on	is	stored	in	a	flip-flop	&	it	is	given	as	an	input	
during	the	next	cycle	as	carry.	



Serial	Adder	



N-bit	Ripple/Parallel	Adder	
•  N-bit	 parallel	 adder	 using	 n	 number	 of	 full-adder	 circuits	 connected	 in	

cascade.	
•  The	carry	output	of	each	adder	is	connected	to	the	carry	input	of	the	next	

higher-order	adder.	



4-bit	Ripple	Carry	Adder	
• 	Two	binary	numbers	A	and	B	are	added	from	right	to	leV,	crea/ng	a	sum	

and	a	carry	at	the	outputs	of	each	full	adder	for	each	bit	posi/on.	



Construc/ng	Larger	Adders	
• A 16-bit adder can be made up of a cascade of four 4-bit 

ripple-carry adders.



Ripple-Borrow	Subtractor	
•  A	 ripple-borrow	 subtractor	 can	 be	 composed	 of	 a	 cascade	 of	 full	

subtractors.	
•  Two	binary	numbers	A	and	B	are	subtracted	from	right	to	leV,	crea/ng	a	

difference	and	a	borrow	at	the	outputs	of	each	full	subtractor	for	each	bit	
posi/on	



Ripple	Adder/Subtractor	(Combined)	
•  A	 single	 ripple-carry	 adder	 can	 perform	 both	 addi/on	 and	 subtrac/on.	

The	 subtrac/on	 A-B	 ca	 be	 done	 by	 taking	 two’s	 complement	 of	 B	 &	
adding	it	to	A.	2’s	complement	can	be	obtained	by	taking	1’s	complement	
&	adding	one	to	the	least	significant	pair	of	bits.	

•  1’s	complement	can	be	implemented	with	inverters	&	a	one	can	be	added	
to	the	sum	through	the	input	carry	to	get	2’s	complement.	



Design	of	Fast	Adders	



Carry	Lookahead	Adder	
•  One	method	of	speeding	up	this	process	by	elimina/ng	inter	stage	carry	

delay	is	called	lookahead-carry	addi/on.		
•  This	method	look	at	the	lower-order	bits	of	augend	&	addend	to	see	if	a	

higher	order	carry	is	to	be	generated.	
•  It	uses	two	func/ons:	carry	generate	&	carry	propogate.	



N-	bit	Carry	Lookahead	Adder	



Carry-Lookahead	Addi/on	
si = aibici + aibici + aibici + aibici

ci+1 = bici + aici + aibi

ci+1 = aibi + (ai + bi)ci

ci+1 = Gi + Pici

Gi = aibi   and   Pi = ai + bi

c0 = 0 

c1 = G0 

c2 = G1 + P1G0 

c3 = G2 + P2G1 + P2P1G0 

c4 = G3 + P3G2 + P3P2G1 + P3P2P1G0

•  Carries are represented in 
terms of Gi (generate) and Pi 
(propagate) expressions.



Floa/ng	Point	Representa/on	



Floa/ng	Point	Arithme/c	
•  Floating point arithmetic differs from integer arithmetic in that 

exponents must be handled as well as the magnitudes of the 
operands.

•  The exponents of the operands must be made equal for addition 
and subtraction. The fractions are then added or subtracted as 
appropriate, and the result is normalized.

•  Increase the power of exponent: Right shift

•  Decrease the power of exponent: Left shift



Floa/ng	Point	Arithme/c	
• Ex: Perform the floating point operation: 

(.101 × 23 + .111 × 24)2

• Start by adjusting the smaller exponent to be equal to the 
larger exponent, and adjust the fraction accordingly. Thus 
we have .101 × 23 = .0101× 24, 

rounding off to .010 × 24

(.0101-.010) × 24  = .0001 × 24  = .001 × 23 

Therefore, losing .001 × 23 of precision in the process.

• The resulting sum is (.010 + .111) × 24 = 1.001 × 24 = .1001 
× 25, and rounding to three significant digits, .100 × 25, and 
we have lost another 0.001 × 24 in the rounding process.



Floa/ng	Point	Arithme/c	(Cont’)	
• If we simply added the numbers using as much precision as we 

needed and then applied rounding only in the final normalization step, 
then the calculation would go like this:

• Normalizing yields .10011 × 25, and rounding to three significant digits 
using the round to nearest even method yields .101 × 25.

• Which calculation is correct .100 x 25 or .101 x 25? 

• According to the IEEE 754 standard, the final result should be the 
same as if the maximum precision needed is used before applying 
the rounding method, and so the correct result is .101 × 25.  So what 
do we do?



Rounding	using	G,	R,	S	
1.BBGRXXX 

Guard bit: LSB of result 
Round bit: 1st bit removed 

Sticky bit: OR of remaining bits 

•  If	G=1	&	R=1,	add	1	to	LSB	
•  If	G=0	&	R=0	or	1,	no	change	
•  If	G=1	&	R=0,	look	at	S	

—  If	S=1,	add	1	to	LSB	
—  If	S=0,	round	to	the	nearest	even		

	(i.e.	 	if	LSB	=1,	then	make	it	0	(add	1	to	LSB)	&		
	 	if	LSB	=0	then	no	change	
	 	1	=	ODD,	0	=	EVEN)	



Guard,	Round,	and	S/cky	Bits	
• This raises the issue of how to compute the intermediate 

results with sufficient accuracy and without requiring too 
much hardware, and for this we use guard, round, and 
sticky bits.

• For the previous example, applying guard (g) and round 
(r) bits with the round toward nearest even method, we 
have:

•



Guard,	Round,	and	S/cky	Bits	
•  Only one extra bit is needed for this intermediate result, the guard 

bit (g), but we also show the round bit (r = 0) to locate its position. 
As we shift the number to normalize, we set a sticky bit (s) if any of 
the shifted out bits are nonzero. For this case, there are no nonzero 
bits to the right of the r bit and so s = 0:	



Guard,	Round,	and	S/cky	Bits	(Cont’)	
• Now for the rounding step: simply append the sticky bit to 

the right of the result before rounding. There is no tie as 
there would be for .100100 and so we round up, 
otherwise we would have rounded down to the closest 
even number (.100):

• For this case, the guard, round, and sticky bits changed our previous 
result. Note that if r is 0 instead of 1, so that the grs combination is 
100, we would have rounded down to .100 because .100 is even 
whereas .101 is not.



Examples:	Guard,	Round,	and	S/cky	Bits		
	 	Frac/on 	GRS 	Incr? 	Rounded	
	 	 	1.000000  000  N 	 	 	1.101100

 100  Y  	 	 	 1.000010
 010  N  	 	 	 1.001110  110
 Y   	 	 	 1.000111  111 Y
  		 	1.111111  111  Y
 	

If G=1 & R=1, add 1 to LSB 
If G=0 & R=0 or 1, no change 
If G=1 & R=0, look at S 

If S=1, add 1 to LSB 
If S=0, round to the nearest even  

 (i.e.  if LSB =1, then make it 0 (add 1 to LSB) &  
  if LSB =0 then no change 
  1 = ODD, 0 = EVEN) 

1.000 
1.110 
1.000 
1.010 
1.001 
10.000 



Floa/ng	Point	Mul/plica/on/Division	
• Floating point multiplication/division are performed in a manner similar to 

floating point addition/subtraction, except that the sign, exponent, and 
fraction of the result can be computed separately.

• Like/unlike signs produce positive/negative results, respectively. Exponent 
of result is obtained by adding exponents for multiplication, or by 
subtracting exponents for division. Fractions are multiplied or divided 
according to the operation, and then normalized.

• Ex: Perform the floating point operation: (+.110 × 25) / (+.100 × 24)2

• The source operand signs are the same, which means that the result will 
have a positive sign. We subtract exponents for division, and so the 
exponent of the result is 5 – 4 = 1.

• We divide fractions, producing the result: 110/100 = 1.10.

• Putting it all together, the result of dividing (+.110 × 25) by (+.100 × 24) 
produces (+1.10 × 21). After normalization, the final result is (+.110 × 22).



FP	Arithme/c	+/-	
•  Check	for	zeros	
•  Align	significands	(adjus/ng	exponents)	
•  Add	or	subtract	significands	
•  Normalize	result	



FP	Addi/on	&	Subtrac/on	Flowchart	



FP	Arithme/c	x/÷	
•  Check	for	zero	
•  Add/subtract	exponents		
•  Mul/ply/divide	significands	(watch	sign)	
•  Normalize	
•  Round	
•  All	intermediate	results	should	be	in	double	length	storage	



Floating Point Multiplication 



Floating Point Division 




