STRAWBERRY

I /strawberrydevelopers
B/strawberry_app
For more visit:
Strawberrydevelopers.weebly.com

UNIT IV: DATA PATH DESIGN

Agenda

- Introduction
- Fixed Point Arithmetic
- Addition
- Subtraction
- Multiplication \& Serial multiplier
- Division \& Serial Divider
- Two's Complement (Addition, Subtraction)
- Booth's algorithm
- Design of basic serial adders
- Serial \& parallel(ripple) Subtractors
- High speed adders
- Floating Point Arithmetic
- Addition \& Subtraction
- Guard, Round \& Sticky bits
- Multiplication \& Division
- Combinational \& Sequential ALU: Assignment 2

Data Representation

- The basic form of information handled by a computer are instructions and data
- Data can be in the form of numbers or nonnumeric data
- Data in the number form can further classified as fixed point and floating point

Fixed Point Numbers

Fixed point number actually symbolizes the real data types.

- Fixed point numbers are those which have a defined numbers after and before the decimal point.

Fixed Point Numbers: Decimal to Binary Conversion

For example:

$$
2.375=(10.011)_{\mathrm{two}}=\left(1 \times 2^{1}\right)+\left(0 \times 2^{0}\right)+\left(0 \times 2^{-1}\right)+\left(1 \times 2^{-2}\right)+\left(1 \times 2^{-3}\right)
$$

Fixed Point Numbers: Unsigned Integers

- Unsigned integers represent positive numbers
- The decimal range of unsigned 8-bit binary numbers is $0-255$

Signed Integers

- We dealt with representing the natural numbers
- Signed or directed whole numbers $=$ integers

$$
\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

- Signed magnitude for 8 bit numbers ranges from +127 to -127

Fixed Point Arithmetic

- Four basic arithmetic instructions:
- Addition
- Subtraction
- Multiplication
- Division

Addition

Rules of Binary Addition

- $0+0=0$
- $0+1=1$
- $1+0=1$
- $1+1=0$, and carry 1 to the next more significant bit

For example,
$00011010+00001100=00100110$

	1	1				carries		
0	0	0	1	1	0	1	0	$=26_{\text {(base } 10)}$
+0	0	0	0	1	1	0	0	$=12_{\text {(base } 10)}$
0	0	1	0	0	1	1	0	$=38_{\text {(base } 10)}$

$00010011+00111110=01010001$

$$
\begin{array}{rllllllll}
& 1 & 1 & 1 & 1 & 1 & & \text { carries }^{0} & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & =19_{\text {(base } 10)} \\
+0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & =62_{(\text {base } 10)} \\
\hline 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & =81_{(\text {base } 10)}
\end{array}
$$

Addition

$$
\begin{array}{r}
1011(11) \\
+0011(3) \\
\hline 1110(14)
\end{array}
$$

010010.1
(18.5)
$+\quad 0110.110(6.75)$
$011001.010(25.25)$

Subtraction

Rules of Binary Subtraction

- $0-0=0$
- $0-1=1$, and borrow 1 from the next more significant bit
- $1-0=1$
- $1-1=0$

For example,
00100101 - $00010001=$

| | 0 | | | | | | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | $4^{1} 0$ | 0 | 1 | 0 | 1 | $=37_{\text {(base 10) }}$ | |
| -0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | $=17_{\text {(base 10) }}$ |

$\begin{array}{llllllllll}0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & = & \left.20_{\text {(base 10) }}\right)\end{array}$

Subtraction: Example

00110011 - $00010110=$

$$
\begin{array}{rllllllll}
& & 0^{1} \theta & 1 & & & & \text { borrows } \\
0 & 0 & 1 & 1 & \theta^{1} & 1 & 1 & =51_{\text {(base } 10)} \\
-0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & =22_{(\text {base } 10)} \\
\hline 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & =29_{(\text {base } 10)}
\end{array}
$$

Multiplication

Rules of Binary Multiplication

- $0 \times 0=0$
- $0 \times 1=0$
- $1 \times 0=0$
- $1 \times 1=1$, and no carry or borrow bits

For example,
$00101001 \times 00000110=11110110$
$\left.\begin{array}{rllllllllll} & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & = & 41_{\text {(base 10) }} \\ \times & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & = & 6_{\text {(base 10) }} \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Multiplication Example

$00010111 \times 00000011=01000101$

\times								1 1	23 (base 10) 3 (base 10)
		1	1	1	1	1			carries
	0	0	0	1	0	1	1	1	
0	0	0	1	0	1	1	1		
0	0	1	0	0	0	1	0	1	69 (base 10)

Multiplication Example

- Multiplication of two 4-bit unsigned binary integers produces an 8-bit result.

- Multiplication of two 4-bit signed binary integers produces only a 7-bit result (each operand reduces to a sign bit and a 3-bit magnitude for each operand, producing a sign-bit and a 6-bit result).

Multiplication: A serial Multiplier

Multiplication: Example

Division: Example

For example,
$00101010 \div 00000110=00000111$

$$
\begin{aligned}
& 111=7_{\text {(base 10) }} \\
& \left.\begin{array}{lll}
1 & 1 & 0
\end{array}\right) 0 \quad 0 \quad 4^{1} 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad=42_{\text {(base 10) }} \\
& -110 \quad=6_{\text {(base 10) }} \\
& \text { borrows }
\end{aligned}
$$

Division: Example

$10000111 \div 00000101=00011011$

$$
\begin{aligned}
& 1 \quad 1 \quad 0 \quad 1 \quad 1=27_{\text {(base 10) }} \\
& 101) \pm \Theta \theta^{1} 0 \quad 0 \quad 1 \quad 1 \quad 1=135_{\text {(base 10) }} \\
& \text { - } 1011=5_{\text {(base 10) }} \\
& \begin{array}{r}
1 \pm 1_{0} \\
-\quad 101
\end{array}
\end{aligned}
$$

Division: Example of Base 2

- $(7 / 3=2)_{10}$ with a remainder R of 1 .
- Equivalently, $(0111 / 11=10)_{2}$ with a remainder R of 1 .

Sign-Magnitude

- Left most bit is sign bit
- 0 means positive
- 1 means negative
- $+18=00010010$
- $-18=10010010$
- Problems
- Need to consider both sign and magnitude in arithmetic
- Two representations of zero (+0 and -0)

Two’s Complement: Signed Integers

- Numbers are added or subtracted on the number circle by traversing clockwise for addition and counterclockwise for subtraction.
- Unlike the number line (a) where overflow never occurs, overflow occurs when a transition is made from +3 to -4 while proceeding around the number circle when adding,
or from -4 to +3 while subtracting.

(b)

Two's Complement: Unsigned Integers

Schematic representation of 4-bit code for integers in [0, 15].

Two's Complement

Integer		2's Complement	
Signed	Unsigned		
5	5	00000101	
4	4	00000100	
3	3	00000011	
2	2	00000010	
1	1	00000001	
0	0	00000000	
-1	255	11111111	
-2	254	11111110	
-3	253	11111101	
-4	252	11111100	
-5	251	11111011	

Note: The most significant (leftmost) bit indicates the sign of the integer; therefore it is sometimes called the sign bit.

If the sign bit is zero,
then the number is greater than or equal to zero, or positive.
If the sign bit is one,
then the number is less than zero, or negative.

Two's Complement

Calculation of 2's Complement

To calculate the 2 's complement of an integer, invert the binary equivalent of the number by changing all of the ones to zeroes and all of the zeroes to ones (also called l's complement), and then add one.

For example,

$$
\begin{array}{r}
00010001_{\text {(binary 17) }} \Rightarrow 11101111_{\text {(two's complement -1 7) }} \\
\text { NOT (0001 0001) }
\end{array} \begin{array}{r}
11101110 \quad \text { (Invert bits) } \\
11101110+00000001
\end{array}=11101111 \quad \text { (Add 1) }
$$

Two's Complement: Addition

2's Complement Addition

Two's complement addition follows the same rules as binary addition.
For example,

$$
5+(-3)=2
$$

$00000101=+5$
$+11111101=-3$
$00000010=+2$

Two's Complement: Subtraction

2's Complement Subtraction

Two's complement subtraction is the binary addition of the minuend to the 2 's complement of the subtrahend (adding a negative number is the same as subtracting a positive one).

For example,

$$
7-12=(-5)
$$

$$
00000111=+7
$$

$$
+11110100=-12
$$

$$
11111011=-5
$$

Two's Complement: Subtraction

$$
\begin{array}{r}
1011(11) \\
-\quad 0011(3) \\
\hline 1011(11) \\
+1101(-3) \\
\hline \not 21000(8)
\end{array}
$$

Addition and Subtraction

- Normal binary addition
- Monitor sign bit for overflow
- Take twos compliment of substahend and add to minuend
- i.e. $a-b=a+(-b)$
- So we only need addition and complement circuits

Haraware tor Aadinon and

Subtraction

$\mathrm{OF}=$ overflow bit
SW = Switch (select addition or subtraction)

2's complement of floating point numbers: Example

2's complement of floating point numbers

To create 2's complement:

- Take the number given by you
010111.1100.
- Start on the least significant bit and locate the first 1 marked red 010111.1100.
-Then flip every bit after that first one (1 change to zero and vice verse) 010111.1100-> 101000.0100

2's complement of floating point numbers: Example

- Example:
- $2.50-6.75=-3.75$

Conversion of 2's complement to decimal

Two's complement properties (including sign change) hold here as well:
$(01.011)_{2 \text { s-compl }}=\left(-0 \times 2^{1}\right)+\left(1 \times 2^{0}\right)+\left(0 \times 2^{-1}\right)+\left(1 \times 2^{-2}\right)+\left(1 \times 2^{-3}\right)=+1.375$
$(11.011)_{2 \text { s-compl }}=\left(-1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)+\left(0 \times 2^{-1}\right)+\left(1 \times 2^{-2}\right)+\left(1 \times 2^{-3}\right)=-0.625$

Booth's Algorithm :Multiplying Negative Numbers

Example of Booth's Algorithm

Multiplicand $(\mathrm{M})=0111=7$
Multiplier $(\mathrm{Q})=0011=3$

Q_{0}	Q_{-1}	Oper
0	0	Shifting
1	1	Shifting
1	0	$A=A-M$ Shifting
0	1	$A=A+M$ Shifting

$\begin{gathered} \text { A } \\ 0000 \end{gathered}$	$\begin{gathered} \mathrm{Q} \\ 0011 \end{gathered}$	$\begin{aligned} & Q_{-1} \\ & 0 \end{aligned}$	M 0111	Initial Val	ues
$\begin{aligned} & 1001 \\ & 1100 \end{aligned}$	$\begin{array}{r} 0011 \\ =10011 \end{array}$	0	$\begin{aligned} & 0111 \\ & 0111 \end{aligned}$	$\begin{aligned} & \text { A A }-M \\ & \text { Shift } \end{aligned}$	First Cycle
1110	0100	1	0111	Shift	Second cycle
0101	0100	1	0111	A $\quad A+M$	Third
0010	1010	0	0111	Shift	Cycle
0001	0101	0	0111	Shift	Fourth Cycle

No. of cycles $=$ No. of bits

Half Adder

- It adds two 1 bits but has no provision to include the carry output from previous bit position.

Inputs		Outputs	
A	B	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Truth table for half-adder

Block schematic of half-adder

Sum $=A \bar{B}+\bar{A} B$
$=A \oplus B$

Full Adder

- It is a combinational circuit that forms the arithmetic sum of three input bits. It consists of three inputs \& two outputs. Two input variables as A \& B. The third input Cin represents the carry from the previous bit position.

Inputs			Outputs	
\mathbf{A}	\mathbf{B}	$\mathbf{C}_{\text {In }}$	Carry	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Truth table for full-adder

Block schematic of full-adder

$$
\mathrm{C}_{\text {out }}=\mathrm{AB}+A \mathrm{C}_{\text {in }}+B \mathrm{C}_{\text {in }} \quad \text { Sum }=\bar{A} \bar{B} \bar{C}_{\text {in }}+\bar{A} B \bar{C}_{\text {in }}+A \bar{B} \bar{C}_{\text {in }}+A B C_{\text {in }}
$$

Full Subtractor

- Truth table and schematic symbol for a ripple-borrow subtractor:

a_{i}	b_{i}	bor $_{i}$	diff $_{i}$	bor $_{i+1}$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Serial Adder

- A serial adder has only a single bit adder. It is used to perform addition of two numbers sequentially bit by bit. Addition of one bit position takes one clock cycle. Thus for n -bit serial adder, n clock cycles are required to complete the addition process \& get the result. At each cycle, the carry produced by a bit position is stored in a flip-flop \& it is given as an input during the next cycle as carry.

Serial Adder

Merits. The circuits for serial adder is small and hence, it is very cheap irrespective of the number of bits to be added.

Demerits. The serial adder is slow since it takes n clock cycles for completing addition of n bit numbers.

N-bit Ripple/Parallel Adder

- N-bit parallel adder using n number of full-adder circuits connected in cascade.
- The carry output of each adder is connected to the carry input of the next higher-order adder.

4-bit Ripple Carry Adder

- Two binary numbers A and B are added from right to left, creating a sum and a carry at the outputs of each full adder for each bit position.

Constructing Larger Adders

- A 16-bit adder can be made up of a cascade of four 4-bit ripple-carry adders.

Ripple-Borrow Subtractor

- A ripple-borrow subtractor can be composed of a cascade of full subtractors.
- Two binary numbers A and B are subtracted from right to left, creating a difference and a borrow at the outputs of each full subtractor for each bit position

Ripple Adder/Subtractor (Combined)

- A single ripple-carry adder can perform both addition and subtraction. The subtraction $A-B$ ca be done by taking two's complement of B \& adding it to A . 2's complement can be obtained by taking 1's complement \& adding one to the least significant pair of bits.
- 1's complement can be implemented with inverters \& a one can be added to the sum through the input carry to get 2's complement.

Design of Fast Adders

The n-bit adder discussed in the last section is implemented using full-adder stages. In which the carry output of each full-adder stage is connected to the carry input of the next higher-order stage. Therefore, the sum and carry outputs of any stage cannot be produced until the input carry occurs; this leads to a time delay in the addition process. This delay is known as carry propagation delay, which can be best explained by considering the following addition.

$$
\begin{array}{r}
0101 \\
+0011 \\
\hline 1000
\end{array}
$$

Addition of the LSB position produces a carry into the second position. This carry, when added to the bits of the second position (stage), produces a carry into the third position. The latter carry, when added to the bits of the third position, produces a carry into the last position. The key thing to notice in this example is that the sum bit generated in the last position (MSB) depends on the carry that was generated by the addition in the previous positions. This means that, adder will not produce correct result until LSB carry has propagated through the intermediate full-adders. This represents a time delay that depends on the propagation delay produced in each full-adder. For example, if each full-adder is considered to have a propagation delay of 30 ns , then S_{3} will not reach its correct value until 90 ns after LSB carry is generated. Therefore, total time required to perform addition is $90+30=120 \mathrm{~ns}$.

Carry Lookahead Adder

- One method of speeding up this process by eliminating inter stage carry delay is called lookahead-carry addition.
- This method look at the lower-order bits of augend \& addend to see if a higher order carry is to be generated.
- It uses two functions: carry generate \& carry propogate.

N- bit Carry Lookahead Adder

Carry-Lookahead Addition

$$
\begin{aligned}
& s_{i}=\bar{a}_{i} \bar{b}_{i} c_{i}+\bar{a}_{i} b_{i} \bar{c}_{i}+a_{i} \bar{b}_{i} \bar{c}_{i}+a_{i} b_{i} c_{i} \mathrm{a}_{\mathrm{i}} \mathrm{~b}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}} \\
& c_{i+1}=b_{i} c_{i}+a_{i} c_{i}+a_{i} b_{i} \\
& c_{i+1}=a_{i} b_{i}+\left(a_{i}+b_{i}\right) c_{i} \\
& c_{i+1}=G_{i}+P_{i} c_{i} \\
& \mathrm{c}_{\mathrm{i}+1}=\mathrm{G}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}} \\
& G_{i}=a_{i} b_{i} \text { and } P_{i}=a_{i}+b_{i} \\
& \mathrm{C}_{0}=0 \\
& \mathrm{c}_{1}=\mathrm{G}_{0} \\
& \mathrm{c}_{2}=\mathrm{G}_{1}+\mathrm{P}_{1} \mathrm{G}_{0} \\
& \mathrm{C}_{3}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{G}_{0} \\
& \because-C+\mathrm{P} C+\mathrm{P} \mathrm{P} C+\mathrm{P} \mathrm{P} \mathrm{P} C
\end{aligned}
$$

Floating Point Representation

- We need a way to represent
- numbers with fractions, e.g., 3.1416
- very small numbers, e.g., 000000001
- very large numbers, e.g., 3.15576×10^{9}

Floating Point Arithmetic

- Floating point arithmetic differs from integer arithmetic in that exponents must be handled as well as the magnitudes of the operands.
- The exponents of the operands must be made equal for addition and subtraction. The fractions are then added or subtracted as appropriate, and the result is normalized.
- Increase the power of exponent: Right shift
- Decrease the power of exponent: Left shift

Floating Point Arithmetic

- Ex: Perform the floating point operation:
$\left(.101 \times 2^{3}+.111 \times 2^{4}\right)_{2}$
- Start by adjusting the smaller exponent to be equal to the larger exponent, and adjust the fraction accordingly. Thus we have $.101 \times 2^{3}=.0101 \times 2^{4}$,
rounding off to $.010 \times 2^{4}$
$(.0101-.010) \times 2^{4}=.0001 \times 2^{4}=.001 \times 2^{3}$
Therefore, losing $.001 \times 2^{3}$ of precision in the process.
- The resulting sum is $(.010+.111) \times 2^{4}=1.001 \times 2^{4}=.1001$ $\times 2^{5}$, and rounding to three significant digits, $.100 \times 2^{5}$, and we have lost another 0.001×2^{4} in the rounding process.

Floating Point Arithmetic (Cont')

- If we simply added the numbers using as much precision as we needed and then applied rounding only in the final normalization step, then the calculation would go like this:

$$
\begin{aligned}
& .101 \times 2^{3}+.111 \times 2^{4}= \\
& .0101 \times 2^{4}+.111 \times 2^{4}= \\
& 1.0011 \times 2^{4}
\end{aligned}
$$

- Normalizing yields $.10011 \times 2^{5}$, and rounding to three significant digits using the round to nearest even method yields $.101 \times 2^{5}$.
- Which calculation is correct $.100 \times 2^{5}$ or $.101 \times 2^{5}$?
- According to the IEEE 754 standard, the final result should be the same as if the maximum precision needed is used before applying the rounding method, and so the correct result is $.101 \times 2^{5}$. So what do we do?

Rounding using G, R, S

Guard bit: LSB of result Round bit: $1^{\text {st }}$ bit removed

- If G=1 \& R=1, add 1 to LSB
- If $\mathrm{G}=0$ \& $\mathrm{R}=0$ or 1 , no change
- If $G=1 \& R=0$, look at S
- If $S=1$, add 1 to LSB
- If $S=0$, round to the nearest even
(i.e. if LSB $=1$, then make it 0 (add 1 to $L S B$) \&
if $L S B=0$ then no change
1 = ODD, 0 = EVEN)

Guard, Round, and Sticky Bits

- This raises the issue of how to compute the intermediate results with sufficient accuracy and without requiring too much hardware, and for this we use guard, round, and sticky bits.
- For the previous example, applying guard (g) and round (r) bits with the round toward nearest even method, we have:

$$
+\begin{gathered}
.101 \times 2^{3} \\
+.111 \times 2^{4}
\end{gathered} \Rightarrow \frac{\begin{array}{c}
.0101 \times 2^{4} \\
+.111 \times 2^{4} \\
\hline 1.00110 \times 2^{4} \\
g r
\end{array}}{\text { • }}
$$

Guard, Round, and Sticky Bits

- Only one extra bit is needed for this intermediate result, the guard bit (g), but we also show the round bit $(r=0)$ to locate its position. As we shift the number to normalize, we set a sticky bit (s) if any of the shifted out bits are nonzero. For this case, there are no nonzero bits to the right of the r bit and $s o s=0$:

Guard, Round, and Sticky Bits (Cont')

- Now for the rounding step: simply append the sticky bit to the right of the result before rounding. There is no tie as there would be for .100100 and so we round up, otherwise we would have rounded down to the closest even number (.100):

$$
\begin{array}{rl}
1.0011 \times 2^{4}=1.00110 & \times 2^{4} \\
g r & 1 \\
& 0 \text { is shifted } \\
& \text { out, so } s=0
\end{array}
$$

- For this case, the guard, round, and sticky bits changed our previous result. Note that if r is 0 instead of 1 , so that the grs combination is 100, we would have rounded down to .100 because .100 is even whereas . 101 is not.

$$
.100110 \times 2^{5} \cong .101 \times 2^{5}
$$

Examples: Guard, Round, and Sticky Bits

Fraction	GRS	Incr?	Rounded	
1.000000		000	N	1.000
100	Y	1.101100		
010	N	1.110	1.000010	
Y		$\mathbb{1} .000110$	110	
		1.010 .001101	111 Y	
		1.111111001111	Y	
		10.000		

If $\mathrm{G}=1 \& \mathrm{R}=1$, add 1 to LSB
If $\mathrm{G}=0 \& \mathrm{R}=0$ or 1 , no change
If $\mathrm{G}=1 \& \mathrm{R}=0$, look at S
If $S=1$, add 1 to LSB
If $S=0$, round to the nearest even
(i.e. \quad if $\mathrm{LSB}=1$, then make it $0($ add 1 to LSB$) \&$ if $\operatorname{LSB}=0$ then no change
$1=\mathrm{ODD}, 0=\mathrm{EVEN})$

Floating Point Multiplication/Division

- Floating point multiplication/division are performed in a manner similar to floating point addition/subtraction, except that the sign, exponent, and fraction of the result can be computed separately.
- Like/unlike signs produce positive/negative results, respectively. Exponent of result is obtained by adding exponents for multiplication, or by subtracting exponents for division. Fractions are multiplied or divided according to the operation, and then normalized.
- Ex: Perform the floating point operation: $\left(+.110 \times 2^{5}\right) /\left(+.100 \times 2^{4}\right)_{2}$
- The source operand signs are the same, which means that the result will have a positive sign. We subtract exponents for division, and so the exponent of the result is $5-4=1$.
- We divide fractions, producing the result: $110 / 100=1.10$.
- Putting it all together, the result of dividing $\left(+.110 \times 2^{5}\right)$ by $\left(+.100 \times 2^{4}\right)$ produces $\left(+1.10 \times 2^{1}\right)$. After normalization, the final result is $\left(+.110 \times 2^{2}\right)$.

FP Arithmetic +/-

- Check for zeros
- Align significands (adjusting exponents)
- Add or subtract significands
- Normalize result

FP Addition \& Subtraction Flowchart

FP Arithmetic x / \div

- Check for zero
- Add/subtract exponents
- Multiply/divide significands (watch sign)
- Normalize
- Round
- All intermediate results should be in double length storage

Floating Point Multiplication

Floating Point Division

STRAWBERRY

I /strawberrydevelopers
B/strawberry_app
For more visit:
Strawberrydevelopers.weebly.com

