

UNIT	III:	MEMORY	ORGANIZATION	

Agenda	
•  Characteris0cs	
•  Memory	Hierarchy	
•  Cache	Memory	

— Elements	of	Cache	Design	
— Address	Mapping	
— Transla0on	of	Cache	Memory	
— Replacement	Algorithm	

•  DRAM	Organiza0on	
•  Magne0c	Disk:	Assignment	1	
•  RAID	
•  Magne0c	Tape	
•  Op0cal	Memory:	Assignment	1	
•  High	Speed	Memory:	Cache	Memory	
•  Associa0ve	&	Interleaved	Memory	

Characteris0cs	

Main memory

Secondary memory

Physical arrangement
of bits into words

Capacity	

Internal memory

External memory

1 byte = 8 bits

Unit	of	Transfer	
•  Internal	

— Usually	governed	by	data	bus	width	
•  External	

— Usually	a	block	which	is	much	larger	than	a	word	
•  Addressable	unit	

— Smallest	loca0on	which	can	be	uniquely	addressed	
–  Byte	(some0mes)	
– Word	internally	

Access	Methods	(1)	
•  Sequen4al	

— Start	at	the	beginning	and	read	through	in	order	
— Access	0me	depends	on	loca0on	of	data	and	previous	loca0on	
— e.g.	tape	

•  Direct	
—  Individual	blocks	have	unique	address	
— Access	is	by	jumping	to	vicinity	plus	sequen0al	search	
— Access	0me	depends	on	loca0on	and	previous	loca0on	
— e.g.	disk	

Access	Methods	(2)	
•  Random	

—  Individual	addresses	iden0fy	loca0ons	exactly	
— Access	0me	is	independent	of	loca0on	or	previous	access	
— e.g.	RAM	

•  Associa4ve	
— a	word	is	retrieved	based	on	a	por0on	of	its	contents	rather	than	its	

address.	
— Access	0me	is	independent	of	loca0on	or	previous	access	
— e.g.	cache	

Performance	
•  Access	4me	

— Time	between	presen0ng	the	address	and	geVng	the	valid	data	
•  Memory	Cycle	4me	

— Time	 may	 be	 required	 for	 the	 memory	 to	 “recover”	 before	 next	
access	

— Cycle	0me	is	access	+	recovery	
•  Transfer	Rate	

— Rate	at	which	data	can	be	moved	

Physical	Types	
•  Semiconductor	

— RAM	
•  Magne4c	

— Disk	&	Tape	
•  Op4cal	

— CD	&	DVD	
•  Others	

— Bubble	
— Hologram	

Physical	Characteris0cs	

Vola0le	Memory	
•  Informa0on	 decays	 naturally	 or	 is	 lost	 when	 electrical	
power	is	switched	off.	

Non-Vola0le	Memory
•  Informa0on	 once	 recorded	 remains	without	 deteriora0on	
un0l	deliberately	changed;	no	electrical	power	is	needed	to	
retain	informa0on.	

Non-Erasable	Memory	
• Cannot	 be	 altered,	 except	 by	 destroying	 the	 storage	unit.	
E.g.	read-only	memory	(ROM)	

Memory	Hierarchy	
•  How	much?	

— Capacity	
•  How	fast?	

— Time	is	money	
•  How	expensive?	

Memory	Hierarchy	-	Diagram	

An	Example	Memory	Hierarchy	

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks on remote
network servers

Main memory holds disk
blocks retrieved from local
disks

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from
the L2 cache memory

CPU registers hold words retrieved from L1
cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

Memory	Hierarchy	
•  Registers	

—  In	CPU	
•  Internal	or	Main	memory	

— May	include	one	or	more	levels	of	cache	
— “RAM”	

•  External	memory	
— Backing	store	

Cache	Memory	
•  Small	amount	of	fast	memory	
•  Sits	between	normal	main	memory	and	CPU	
•  May	be	located	on	CPU	chip	or	module	

Cache/Main	Memory	Structure	

Cache	opera0on	-	overview	
•  CPU	requests	contents	of	memory	loca0on	
•  Check	cache	for	this	data	
•  If	present,	get	from	cache	(fast)	
•  If	not	present,	read	required	block	from	main	memory	to	cache	
•  Then	deliver	from	cache	to	CPU	
•  Cache	 includes	 tags	 to	 iden0fy	which	 block	 of	main	memory	 is	 in	 each	

cache	slot	

Cache	Opera0on	

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower, cheaper storage
device at level k+1 is partitioned
into blocks.

Data is copied between
levels in block-sized transfer units

8 9 14 3
Smaller, faster, more expensive
device at level k caches a
subset of the blocks from level k+1

Level k:

Level k+1: 4

4

4 10

10

10

Cache	Read	Opera0on	

Request
14
Request
12

General	Caching		Concepts	
•  Program	 needs	 object	 d,	 which	 is	 stored	 in	

some	block	b	
•  Cache	hit	

—  Program	finds		b		in	the	cache	at	level	k.		E.g.,		
block	14	

•  Cache	miss	
—  b	is	not	at	level	k,	so	level	k	cache		must	fetch	

it	from	level	k+1.													E.g.,		block	12	
—  If	level	k	cache	is	full,	then	some	current	block	

must	be	replaced	(evicted).	 	Which	one	is	the	
“vic0m”?		
–  Placement	 policy:	 where	 can	 the	 new	 block	

go?	E.g.,	b	mod	4	
–  Replacement	 policy:	 which	 block	 should	 be	

evicted?	E.g.,	LRU	

9 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Level
 k:

Level
k+1:

14 14

12

14

4*

4* 12

12

0 1 2 3

Request
12

4* 4* 12

Typical	Cache	Organiza0on	
•  Cache	connects	to	the	processor	via	data,	control,	and	address	lines.	
•  The	data	and	address	lines	also	afach	to	data	and	address	buffers,	which	afach	

to	a	system	bus	from	which	main	memory	is	reached.	
•  When	 a	 cache	 hit	 occurs,	 the	 data	 and	 address	 buffers	 are	 disabled	 and	

communica0on	is	only	between	processor	and	cache,	with	no	system	bus	traffic.	
•  When	a	cache	miss	occurs,	the	desired	address	is	loaded	onto	the	system	bus	and	

the	 data	 are	 returned	 through	 the	 data	 buffer	 to	 both	 the	 cache	 and	 the	
processor.	

Elements	of	Cache	Design	

Cache	Addresses	
•  Virtual	memory	is	a	facility	that	allows	programs	to	address	memory	from	

a	 logical	 point	 of	 view,	without	 regard	 to	 the	 amount	 of	main	memory	
physically	available.	

•  When	virtual	memory	is	used,	the	address	fields	of	machine	instruc0ons	
contain	virtual	addresses.		

•  For	 reads	 to	 and	 writes	 from	 main	 memory,	 a	 hardware	 memory	
management	unit	 (MMU)	 translates	each	 virtual	 address	 into	a	physical	
address	in	main	memory.	

•  A	 logical	 cache,	 also	known	as	a	virtual	 cache,	 stores	data	using	virtual	
addresses.	 The	 processor	 accesses	 the	 cache	 directly,	 without	 going	
through	the	MMU.		

•  A	physical	cache	stores	data	using	main	memory	physical	addresses.	

Cache	Addresses	

Cache	Addresses	
•  Advantage	of	 the	 logical	 cache	 is	 that	 cache	access	 speed	 is	 faster	 than	

for	 a	 physical	 cache,	 because	 the	 cache	 can	 respond	 before	 the	MMU	
performs	an	address	transla0on.	

•  Disadvantage	has	to	do	with	the	fact	that	most	virtual	memory	systems	
supply	 each	 applica0on	 with	 the	 same	 virtual	 memory	 address	 space.	
That	 is,	each	applica0on	sees	a	virtual	memory	 that	 starts	at	address	0.	
Thus,	the	same	virtual	address	in	two	different	applica0ons	refers	to	two	
different	 physical	 addresses.	 The	 cache	 memory	 must	 therefore	 be	
completely	flushed	with	each	applica0on	context	switch.	

Cache	Size	
•  We	would	like	the	size	of	the	cache	to	be	small	enough	so	that	the	overall	

average	 cost	 per	 bit	 is	 close	 to	 that	 of	 main	 memory	 alone	 and	 large	
enough	 so	 that	 the	 overall	 average	 access	 0me	 is	 close	 to	 that	 of	 the	
cache	alone.	

Mapping	Func0on	
•  Cache	of	64kByte	
•  Cache	block	of	4	bytes	

—  i.e.	cache	is	16k	(214)	lines	of	4	bytes	
•  16MBytes	main	memory	
•  24	bit	address		

— (224=16M)	

Direct	Mapping	
•  Each	block	of	main	memory	maps	to	only	one	cache	line	

—  i.e.	if	a	block	is	in	cache,	it	must	be	in	one	specific	place	
•  Address	is	in	two	parts	
•  Least	Significant	w	bits	iden0fy	unique	word	
•  Most	Significant	s	bits	specify	one	memory	block	
•  The	 MSBs	 are	 split	 into	 a	 cache	 line	 field	 r	 and	 a	 tag	 of	 s-r	 (most	

significant)	

Direct	Mapping:	Address	Structure	

Tag s-r Line or Slot r Word w

8 14 2

•  24	bit	address	
•  2	bit	word	iden0fier	(4	byte	block)	
•  22	bit	block	iden0fier	

— 8	bit	tag	(=22-14)	
— 14	bit	slot	or	line	

•  No	two	blocks	in	the	same	line	have	the	same	Tag	field	
•  Check	contents	of	cache	by	finding	line	and	checking	Tag	

Direct	Mapping:	Index/Line	
•  If the cache contains 2k bytes, then the k least significant bits

(LSBs) are used as the index.
— data from address i would be stored in block i mod 2k.

•  For example, data from memory address 11 maps to cache block 3 on
the right, since 11 mod 4 = 3 and since the lowest two bits of 1011 are
11.

0

1

2

3

Index

Memory

Address

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Direct	Mapping:	Tag	
•  To	 find	 data	 stored	 in	 the	 cache,	 we	 need	 to	 add	 tags	 to	 dis0nguish	

between	different	memory	loca0ons	that	map	to	the	same	cache	block.	
•  We	include	a	single	valid	bit	per	block	to	dis0nguish	full	and	empty	blocks.	

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Tag Valid Data Index

00

01

10

11

00 1

11 1

01 1

01 1

Direct	Mapping	Cache	Organiza0on	

Direct	Mapping	Example	

Direct	Mapping	Summary	
•  Address	length	=	(s	+	w)	bits	
•  Number	of	addressable	units	=	2s+w	words	or	bytes	
•  Block	size	=	line	size	=	2w	words	or	bytes	
•  Number	of	blocks	in	main	memory	=	2s+	w/2w	=	2s	

•  Number	of	lines	in	cache	=	m	=	2r	

•  Size	of	tag	=	(s	–	r)	bits	

Direct	Mapping	Advantage	
•  Simple	
•  Inexpensive	

Direct	Mapping	Disadvantage	
•  Fixed	loca4on	for	given	block	

—  If	a	program	accesses	2	blocks	that	map	to	the	same	line	repeatedly,	
cache	misses	are	very	high	

•  E.g.:	 If	 a	 program	uses	 addresses	 2,	 6,	 2,	 6,	 2,	 ...,	 then	 each	 access	will	
result	in	a	cache	miss	and	a	load	into	cache	block	2.	

•  This	cache	has	four	blocks,	but	direct	mapping	might	not	let	us	use	all	of	
them.	This	can	result	in	more	misses	than	we	might	like.	

Fully	Associa0ve	Mapping	
•  A	 fully	 associa0ve	 cache	 permits	 data	 to	 be	 stored	 in	 any	 cache	 block,	

instead	of	forcing	each	memory	address	into	one	par0cular	block.	
— When	data	 is	 fetched	 from	memory,	 it	 can	be	placed	 in	any	unused	

block	of	the	cache.	
— This	way	we’ll	 never	 have	 a	 conflict	 between	 two	 or	more	memory	

addresses	which	map	to	a	single	cache	block.	
•  Memory	address	is	interpreted	as	tag	and	word	
•  Tag	uniquely	iden0fies	block	of	memory	
•  Every	line’s	tag	is	examined	for	a	match	
•  Cache	searching	gets	expensive	

Tag 22 bit
Word
2 bit

Associa0ve	Mapping	Address	Structure	

•  22	bit	tag	stored	with	each	32	bit	block	of	data	
•  Compare	tag	field	with	tag	entry	in	cache	to	check	for	hit	
•  Least	 significant	2	bits	of	address	 iden0fy	which	16	bit	word	 is	 required	

from	32	bit	data	block	

Fully	Associa0ve	Cache	Organiza0on	

Fully	Associa0ve	Mapping	Example	

Fully	Associa0ve	Mapping	-	Disadvantage	
•  However,	a	fully	associa0ve	cache	is	expensive	to	implement.	
— Because	there	is	no	index	field	in	the	address	anymore,	the	en,re	block	

address	must	be	used	as	the	tag,	increasing	the	total	cache	size.	
— Data	could	be	anywhere	in	the	cache,	so	we	must	check	the	tag	of	every	

block.	That’s	a	lot	of	comparators!	

Associa0ve	Mapping	Summary	
•  Address	length	=	(s	+	w)	bits	
•  Number	of	addressable	units	=	2s+w	words	or	bytes	
•  Block	size	=	line	size	=	2w	words	or	bytes	
•  Number	of	blocks	in	main	memory	=	2s+	w/2w	=	2s	

•  Number	of	lines	in	cache	=	undetermined	
•  Size	of	tag	=	s	bits	

Set	Associa0ve	Mapping	
•  Cache	is	divided	into	a	number	of	sets	
•  Each	set	contains	a	number	of	lines	
•  A	given	block	maps	to	any	line	in	a	given	set	

— e.g.	Block	B	can	be	in	any	line	of	set	i	
•  e.g.	2	lines	per	set	

— 2	way	associa0ve	mapping	
— A	given	block	can	be	in	one	of	2	lines	in	only	one	set	

Set	Associa0ve	Mapping	
•  An	intermediate	possibility	is	a	set-associa0ve	cache.	
— The	cache	is	divided	into	groups	of	blocks,	called	sets.	
— Each	memory	 address	maps	 to	 exactly	 one	 set	 in	 the	 cache,	 but	 data	

may	be	placed	in	any	block	within	that	set.	

Direct	Mapped	 Fully	Associa0ve	

Example	placement	in	Set-Associa0ve	Cache	

Two	Way	Set	Associa0ve	Cache	Organiza0on	

Set	Associa0ve	Mapping	Address	Structure	

•  Use	set	field	to	determine	cache	set	to	look	in	
•  Compare	tag	field	to	see	if	we	have	a	hit	
•  e.g	

— Address 	 	Tag 	Data 	 	Set	number	
— 1FF	7FFC 	1FF 	12345678 	1FFF	
— 001	7FFC 	001 	11223344 	1FFF	

Tag 9 bit Set 13 bit
Word
2 bit

Two	Way	Set	Associa0ve	Mapping	
Example	

Set	Associa0ve	Mapping	Summary	
•  Address	length	=	(s	+	w)	bits	
•  Number	of	addressable	units	=	2s+w	words	or	bytes	
•  Block	size	=	line	size	=	2w	words	or	bytes	
•  Number	of	blocks	in	main	memory	=	2d	

•  Number	of	lines	in	set	=	k	
•  Number	of	sets	=	v	=	2d	

•  Number	of	lines	in	cache	=	kv	=	k	*	2d	

•  Size	of	tag	=	(s	–	d)	bits	

Replacement	Algorithms:	Direct	mapping	
•  No	choice	
•  Each	block	only	maps	to	one	line	
•  Replace	that	line	

Replacement	Algorithms:		
Associa0ve	&	Set	Associa0ve	
•  Least	Recently	used	(LRU):	2	way	set	associa0ve	
•  First	in	first	out	(FIFO)	

— replace	block	that	has	been	in	cache	longest	
•  Least	frequently	used	

— The	block	that	has	been	in	the	cache	the	longest	with	no	reference	to	
it	is	replaced	

— The	cache	consists	of	a	stack	of	blocks	
— Most	recently	referenced	block	is	on	the	top	of	the	stack	
— When	a	block	is	referenced	or	brought	into	the	cache,	it	is	placed	on	

the	top	of	the	stack	

FIFO	Algorithm	
•  First in First Out.
•  Replace	the	page	that	is	oldest.

15 page faults

LRU	Algorithm	
•  Replace	the	page	that	has	not	been	used	for	the	longest	period	of	4me.	
•  The	block	that	has	been	in	the	cache	the	longest	with	no	reference	to	it	is	

replaced	
•  The	cache	consists	of	a	stack	of	blocks	
•  Most	recently	referenced	block	is	on	the	top	of	the	stack	
•  When	a	block	is	referenced	or	brought	into	the	cache,	it	is	placed	on	the	

top	of	the	stack	
E.g.	Reference	string:		1,	2,	3,	4,	1,	2,	5,	1,	2,	3,	4,	5	

— Cache	will	have	4	frames.	
Sol.	8	Page	Faults	

53

12 page faults

LRU	Page	Replacement	

Least	Recently	Used	(LRU)	
•  The	block	that	has	been	in	the	cache	the	longest	with	no	reference	to	it	is	

replaced	
•  The	cache	consists	of	a	stack	of	blocks	
•  Most	recently	referenced	block	is	on	the	top	of	the	stack	
•  When	a	block	is	referenced	or	brought	into	the	cache,	it	is	placed	on	the	

top	of	the	stack	

55

Write	Policy	
•  Must	not	overwrite	a	cache	block	unless	main	memory	is	up	to	date	
•  Mul0ple	CPUs	may	have	individual	caches	
•  I/O	may	address	main	memory	directly	

Write policy in the cache

•  Write-though: the information is written to both the block in cache and block in main
memory.

•  Write-back: information is only written to the block in cache. The modified block is
written to main memory only when it is replaced.

Advantage of write-back

•  Individual words can be written by the processor in the cache level, fast!
•  Multiple writes within a block requires only one write to main memory
•  When blocks are written back, the system can make effective use of a high bandwidth

transfer.

Advantage of write-through

•  Misses are simpler and cheaper because they never require a block in cache to be
written to main memory.

•  Easy to implement than write-back, a write-through cache only needs a write buffer.

disadvantage of write-back

•  Interaction with other processors when RAW (Read after Write) hazard occurs, say
other processor will read the incorrect data in its own cache.

disadvantage of write-through

•  Cost since write to main memory is very slow

Write	through	
•  All	writes	go	to	main	memory	as	well	as	cache	
•  Mul0ple	 CPUs	 can	monitor	main	memory	 traffic	 to	 keep	 local	 (to	 CPU)	

cache	up	to	date	
•  Lots	of	traffic	
•  Slows	down	writes	

Write	back	
•  Updates	ini0ally	made	in	cache	only	
•  Update	bit	for	cache	slot	is	set	when	update	occurs	
•  If	block	is	to	be	replaced,	write	to	main	memory	only	if	update	bit	is	set	
•  Other	caches	get	out	of	sync	
•  I/O	must	access	main	memory	through	cache	
•  N.B.	15%	of	memory	references	are	writes	

Example:	Write	back	

Line	Size	
•  Larger	blocks	reduce	the	number	of	blocks	that	fit	into	a	cache.	Because	

each	 block	 fetch	 overwrites	 older	 cache	 contents,	 a	 small	 number	 of	
blocks	results	in	data	being	overwrifen	shortly	auer	they	are	fetched.	

Number	of	caches	
MULTILEVEL	CACHES:	

•  Most	 contemporary	 designs	 include	 both	 on-chip	 and	 external	 caches.	
The	 simplest	 such	 organiza0on	 is	 known	 as	 a	 two-level	 cache,	with	 the	
internal	 cache	 designated	 as	 level	 1	 (L1)	 and	 the	 external	 cache	
designated	as	level	2	(L2).	

•  The	 reason	 for	 including	 an	 L2	 cache	 is	 the	 following:	 If	 there	 is	 no	 L2	
cache	and	the	processor	makes	an	access	request	for	a	memory	loca0on	
not	 in	 the	L1	cache,	 then	the	processor	must	access	memory	across	 the	
bus.		

•  Due	 to	 the	 typically	 slow	bus	 speed	and	 slow	memory	access	0me,	 this	
results	in	poor	performance.		

•  On	 the	 other	 hand,	 if	 an	 L2	 SRAM	 (sta0c	 RAM)	 cache	 is	 used,	 then	
frequently	the	missing	informa0on	can	be	quickly	retrieved.		

Number	of	caches	
UNIFIED	VERSUS	SPLIT	CACHES:	

•  When	the	on-chip	cache	first	made	an	appearance,	many	of	the	designs	
consisted	 of	 a	 single	 cache	 used	 to	 store	 references	 to	 both	 data	 and	
instruc0ons.		

•  More	 recently,	 it	 has	 become	 common	 to	 split	 the	 cache	 into	 two:	 one	
dedicated	to	instruc0ons	and	one	dedicated	to	data.		

•  These	two	caches	both	exist	at	the	same	level,	typically	as	two	L1	caches.		
•  When	the	processor	afempts	to	fetch	an	instruc0on	from	main	memory,	

it	first	consults	the	instruc0on	L1	cache,	and	when	the	processor	afempts	
to	fetch	data	from	main	memory,	it	first	consults	the	data	L1	cache.	

Semiconductor	Memory	Types	

DRAM	Organiza0on	
•  A	dynamic	RAM	(DRAM)	 is	made	with	cells	 that	store	data	as	charge	on	

capacitors.	
•  The	presence	or	absence	of	charge	in	a	capacitor	is	interpreted	as	a	binary	

1	or	0.		
•  Because	capacitors	have	a	natural	tendency	to	discharge,	dynamic	RAMs	

require	periodic	charge	refreshing	to	maintain	data	storage.	
•  Simpler	construc0on	
•  Less	expensive	
•  Need	refresh	circuits	
•  Slower	
•  Main	memory	

DRAM	Organiza0on	
•  An	individual	cell	that	stores	1	bit.	
•  The	address	line	is	ac0vated	when	the	bit	value	from	this	cell	is	to	be	read	

or	wrifen.		
•  The	transistor	acts	as	a	switch	that	is	closed	(allowing	current	to	flow)	if	a	

voltage	 is	 applied	 to	 the	 address	 line	 and	open	 (no	 current	 flows)	 if	 no	
voltage	is	present	on	the	address	line.	

•  A	high	voltage	represents	1,	and	a	low	voltage	represents	0.	

DRAM	Organiza0on:	Write	opera0on	
WRITE:	
•  A	voltage	signal	is	applied	to	the	bit	line	
•  A	 signal	 is	 then	 applied	 to	 the	 address	 line,	 allowing	 a	 charge	 to	 be	

transferred	to	the	capacitor.	

	

Voltage	signal	applied	to	bit	line	
1	

Voltage	signal	applied	to	address	line	
2	

Charge	transferred to the capacitor	
3	

DRAM	Organiza0on:	Read	opera0on	
READ:	
• When	 the	 address	 line	 is	 selected,	 the	 transistor	 turns	on	 and	 the	 charge	
stored	on	the	capacitor	is	fed	out	onto	a	bit	line	and	to	a	sense	amplifier.	The	
sense	 amplifier	 compares	 the	 capacitor	 voltage	 to	 a	 reference	 value	 and	
determines	if	the	cell	contains	a	logic	1	or	a	logic	0.	The	readout	from	the	cell	
discharges	the	capacitor,	which	must	be	restored	to	complete	the	opera0on.	
	

Sta0c	RAM	
•  Bits	stored	as	on/off	switches	
•  Holds	data	as	long	as	power	is	supplied	
•  No	charges	to	leak	
•  No	refreshing	needed	when	powered	
•  More	complex	construc0on	
•  More	expensive	
•  Does	not	need	refresh	circuits	
•  Faster	
•  Cache	
•  Digital	

— Uses	flip-flops	

Sta0c	RAM	Structure	

Sta0c	RAM	Opera0on	
•  Four	Transistors	–	T1	T2	T3	T4	
•  Transistor	arrangement	gives	stable	logic	state	
•  State	1	

—  C1	high,	C2	low	
—  T1	T4	off,	T2	T3	on	

•  State	0	
—  C2	high,	C1	low	
—  T2	T3	off,	T1	T4	on	

•  Both	states	are	stable	as	long	as	the	direct	current	(dc)	voltage	is	applied.	
•  SRAM	address	line	is	used	to	open	or	close	a	switch.	
•  The	address	 line	controls	two	transistors	(T5	and	T6).When	a	signal	 is	applied	to	

this	line,	the	two	transistors	are	switched	on,	allowing	a	read	or	write	opera0on.		

Sta0c	RAM	Opera0on	

C1	High	 C2	Low	CASE	1:	State	1	

ON	

ON	

CASE	2:	State	0	 C1	Low	 C2	High	

ON	

ON	

OFF	

OFF	

OFF	

OFF	

For	a	write	opera4on,	the	desired	bit	value	is	applied	to	line	B,	while	its	complement	is	applied	
to	line	.	This	forces	the	four	transistors	(T1,	T2,	T3,	T4)	into	the	proper	state.	
For	a	read	opera4on,	the	bit	value	is	read	from	line	B.	

SRAM	v	DRAM	
•  Both	vola0le	

— Power	needed	to	preserve	data	
•  Dynamic	cell		

— Simpler	to	build,	smaller	
— More	dense	
— Less	expensive	
— Needs	refresh	
— Larger	memory	units	

•  Sta0c	
— Faster	
— Cache	

RAID	
•  Redundant	Array	of	Independent	Disks		
•  Not	 a	 hierarchy—but	 different	 design	 architectures	 with	 3	 common	

characteris0cs:	
— Set	of	physical	disks	viewed	as	single	logical	drive	by	O/S	
— Data	distributed	across	physical	drives	of	an	array	
— Can	 use	 redundant	 capacity	 to	 store	 parity	 informa0on,	 which	

guarantees	data	recoverability	in	case	of	a	disk	failure	(except	RAID	0)	
•  It	 replaces	 the	 large-capacity	 disk	 drives	 with	 mul0ple	 smaller-capacity	

drives	and	distributes	data	in	such	a	way	to	enable	simultaneous	access	to	
data	from	mul0ple	drives.	

•  Improves	 I/O	 performance	 and	 allows	 easier	 incremental	 increase	 in	
capacity.	

RAID	0	(non-redundant)	

Each disk is divided into strips.
A set of consecutive strips is referred to as stripe.
Advantage: reduces I/O transfer time

RAID	0	(non-redundant)	

RAID	1	(mirrored)	

Redundancy is achieved by duplicating all the data.
Advantages: (i) recovery from failure is simple
Disadvantage: cost

RAID	2	(redundancy	through	Hamming	code)	

Makes use of parallel access technique
All member disks participate in the execution of every I/O request.
Strips are small (byte or word)
An error correcting code is calculated across corresponding bits on
each data disk, and the bits of code are stored in corresponding bit
positions on multiple parity disks.

RAID	3	(bit-interleaved	parity)	

Similar to RAID 2
Difference is that it requires a single redundant disk.
Instead of an error correcting code, simple parity bit is
computed for the set of bits in the same position on all the data
disks.

RAID	4	(block-level	parity)	

Makes use of an independent access technique
Strips are relatively large.

RAID	5	(block-level	distributed	parity)	

Similar to RAID 4
Difference is that it distributes parity strips across all disks.

RAID	6	(dual	redundancy)	

Two different parity calculations are carried out and
stored in separate blocks on different disks.

RAID	Levels	

RAID	Comparison	

RAID	Comparison	contd.	

RAID	Comparison	contd.	

Magne0c	Tape	
•  Serial	access	
•  Slow	
•  Very	cheap	
•  Backup	and	archive	

Magne0c	Tape	

Magne0c	Tape	

Associa0ve	Memory	
•  This	 type	 of	 memory	 is	 accessed	 simultaneously	 and	 in	 parallel	 on	 the	

basis	of	data	content	rather	then	by	specific	address	or	loca0on.		
•  When	 a	word	 is	wrifen	 in	 an	 associa0ve	memory,	 no	 address	 is	 given.	

The	memory	is	capable	of	finding	an	empty	unused	loca0on	to	store	the	
word.	

•  	When	a	word	is	to	be	read	from	an	associa0ve	memory,	the	content	of	
the	word,	or	part	of	the	word,	is	specified.	The	memory	locates	all	words	
which	match	the	specified	content	and	marks	them	for	reading.		

•  An	associa0ve	memory	is	more	expensive	than	a	random	access	memory.	

Interleaved	Memory	

