


UNIT	II:	SYSTEM	BUSES	



Agenda	
•  Computer	Components	

•  Computer	func3ons	and	flow	control	
—  Instruc3on	Cycle:	Fetch	&	Execute	
—  Interrupts	

•  Interconnec3on	Structures	

•  Bus	Interconnec3on	

— Bus	Structure	
— Mul3ple	Bus	Hierarchies	

— Elements	of	Bus	Design	



Computer	Components	
•  In	Hardwired	systems,	there	is	a	small	set	of	basic	logic	components	that	

can	 be	 combined	 in	 various	 ways	 to	 store	 binary	 data	 &	 to	 perform	
arithme3cal	&	logical	opera3ons	on	that	data.	

•  Hardwired	systems	are	inflexible.	
•  General	purpose	hardware	 can	do	different	 tasks,	 given	 correct	 control	

signals.	

•  Instead	of	re-wiring	the	hardware	for	each	new	program,	the	programmer	
merely	needs	to	supply	a	new	set	of	control	signals	



Computer	Components	

Hardware	&	SoMware	Approaches	



Program	
•  A	sequence	of	steps	

•  For	each	step,	an	arithme3c	or	logical	opera3on	is	done	
•  For	each	opera3on,	a	different	set	of	control	signals	is	needed	



Computer	Components	
•  The	Control	Unit	(CU)	and	the	Arithme3c	and	Logic	Unit	(ALU)	cons3tute	

the	Central	Processing	Unit	(CPU)	

•  Data	and	instruc3ons	need	to	get	into	the	system	and	results	need	to	get	
out	

—  Input/output	(I/O	module)	

•  Temporary	storage	of	code	and	results	is	needed	

— Main	memory	(RAM)	



Computer	Components:	Top	Level	View	
Specifies	the	address	
in	memory	for	the	
next	read	or	write	

Contains	the	data	
to	be	wriZen	into	
memory	or	
receives	the	data	
read	from	memory	

Specifies	a	par3cular	I/O	device	

Used	for	exchange	of	
data	between	an	I/O	
module	&	the	CPU	

Holds	the	
address	of	the	
next	instruc3on	
to	be	fetched	

Holds	the	fetched	
instruc3on.	The	
instruc3on	contains	
bits	that	specify	the	
ac3on	processor	is	
to	take.		



Computer	Func3on	
•  The	basic	 func3on	performed	by	a	 computer	 is	execu3on	of	a	program,	

which	consists	of	set	of	instruc3ons	stored	in	memory.	

•  The	processor	does	the	actual	work	by	execu3ng	instruc3ons	specified	in	
the	program.	



Instruc3on	Cycle	



Instruc3on	Cycle:	Fetch	Cycle	
•  Program	Counter	(PC)	holds	address	of	next	instruc3on	to	fetch	

•  Processor	fetches	instruc3on	from	memory	loca3on	pointed	to	by	PC	
•  Increment	PC	

— Unless	told	otherwise	
•  Instruc3on	 loaded	 into	 Instruc3on	 Register	 (IR)	 for	 execu3on.	 The	

instruc3on	contains	bits	that	specify	the	ac3on	processor	is	to	take.		

	

	



Instruc3on	Cycle:	Execute	Cycle	
•  CPU	executes	the	instruc3on	

•  Processor	interprets	instruc3on	and	performs	required	ac3ons,	such	as:	
— Processor	-	memory	

–  data	transfer	between	CPU	and	main	memory	

— Processor	-	I/O	
–  Data	transfer	between	CPU	and	I/O	module	

— Data	processing	
–  Some	arithme3c	or	logical	opera3on	on	data	

— Control	
–  Altera3on	of	sequence	of	opera3ons	
–  e.g.	jump	

— Combina3on	of	above	



Example	of	Program	Execu3on	
•  Internal	CPU	Registers:	

—  Program	 Counter(PC)	 =	 Address	 of	
instruc3on	

—  InstrucDon	 Register(IR)	 =	 Instruc3on	
being	 executed.	 The	 instruc3on	
contains	 bits	 that	 specify	 the	 ac3on	
processor	is	to	take.		

—  Accumulator(AC)	=	Temporary	storage	

•  Par3al	list	of	opcodes:	

		

Fetch Execution 

Note use of 
hexadecimal 

Binary	 Hexadecimal	 InstrucDon	

0001	 1	 Load	AC	from	
memory	

0010		 2	 Store	AC	to	memory	

0101	 5	 Add	to	AC	from	
memory	



Instruc3on	Cycle	–	State	Diagram	

CPU 
Operations 

CPU-
RAM-I/O 
Operations 



Instruc3on	Cycle	–	State	Diagram	
•  InstrucDon	Address	CalculaDon	(iac):	Determine	the	address	of	the	next	

instruc3on		

•  InstrucDon	 Fetch	 (if):	 Read	 instruc3on	 from	 its	 memory	 loca3on	 into	
processor.		

•  InstrucDon	 OperaDon	 Decoding	 (iod):	 analyze	 instruc3on	 to	 determine	
opera3on	type	to	be	performed	and	operands	to	be	used.		

•  Operand	Address	CalculaDon	(oac):	If	the	opera3on	involves	reference	to	
an	operand	in	memory	then	determine	the	address	of	the	operand.		

•  Operand	Fetch	(of):	Fetch	the	operand	from	memory	or	read	it	from	I/O	

•  Data	OperaDon	(do):	Perform	indicated	opera3on	in	the	instruc3on	

•  Operand	Store	(os):	Write	result	into	memory	or	out	to	I/O		



Interrupts	
•  Mechanism	 by	 which	 other	 modules	 (e.g.	 I/O)	 may	 interrupt	 normal	

sequence	of	processing	
•  Interrupts	 are	 provided	 primarily	 as	 a	 way	 to	 improve	 processing	

efficiency.	
•  Classes	of	Interrupts:	

— Program:	Generated	by	some	condi3on	that	occurs	as	a	result	of	an	
instruc3on	execu3on.	e.g.	overflow,	division	by	zero	

— Timer:	 Generated	 by	 a	 3mer	 within	 the	 processor.	 This	 allows	 the	
opera3ng	system	to	perform	certain	func3ons	on	regular	basis.	

—  I/O:	Generated	by	an	I/O	controller	to	signal	normal	comple3on	of	an	
opera3on	or	to	signal	variety	of	error	condi3ons.	

— Hardware	failure:	Generated	by	a	failure	such	as	power	failure.	



Sequence	of	instruc3ons	
to	prepare	for	the	actual	
I/O	opera3on	

Once	this	command	is	issued,	the	
program	must	wait	for	the	I/O	device	
to	perform	the	requested	func3on.	

Sequence	of	
instruc3ons	to	
complete	the	
opera3on	

Sequence	of	instruc3ons	
that	do	not	involve	I/O	

USER	PROGRAM	PERFORMS	A	SERIES	OF	WRITE	CALLS	INTERLEAVED	WITH	PROCESSING	



No	Interrupt:	Timing	Diagram	



Short	I/O	Wait:	Timing	Diagram	



Comparison	of	Timing	Diagrams	

There	 is	 a	 gain	 in	 efficiency	
using	 interrupts	 as	 processor	
doesn’t	have	to	wait	for	an	I/
O	opera3on.	



Long	I/O	Wait:	Timing	Diagram 



Comparison	

There	 is	 a	 gain	 in	 efficiency	
using	 interrupts	because	part	
of	 the	3me	during	which	 the	
I/O	 opera3on	 is	 underway	
overlaps	 with	 the	 execu3on	
of	user	instruc3ons.	



Interrupt	Cycle	
•  Added	to	instruc3on	cycle	
•  Processor	checks	for	interrupt	

—  Indicated	by	an	interrupt	signal	
•  If	no	interrupt,	fetch	next	instruc3on	
•  If	interrupt	pending:	

— Suspend	execu3on	of	current	program		

— Save	context	
— Set	PC	to	start	address	of	interrupt	handler	rou3ne	
— Process	interrupt	
— Restore	context	and	con3nue	interrupted	program	



Transfer	of	Control	via	Interrupts	



Instruc3on	Cycle	with	Interrupts	



Instruc3on	Cycle	(with	Interrupts)	-			
State	Diagram	



Mul3ple	Interrupts	
•  Disable	interrupts	(approach	#1)	

— Processor	 will	 ignore	 further	 interrupts	 whilst	 processing	 one	
interrupt	

—  Interrupts	 remain	 pending	 and	 are	 checked	 aMer	 first	 interrupt	 has	
been	processed	

—  Interrupts	handled	in	sequence	as	they	occur	
•  Define	priori3es	(approach	#2)	

— Low	priority	interrupts	can	be	interrupted	by	higher	priority	interrupts	
— When	higher	priority	interrupt	has	been	processed,	processor	returns	

to	previous	interrupt	



Mul3ple	Interrupts	
•  SEQUENTIAL	INTERRUPT	PROCESSING:	



Mul3ple	Interrupts	
•  NESTED	INTERRUPT	PROCESSING:	



Time	Sequence	of	Mul3ple	Interrupts	
I/O	DEVICES	 PRIORITY	

Printer	 2	

Disk	 4	

Communica3on	
Line	

5	

Time	 Interrupt	 Access	 State	

At	t=10	 Printer	interrupt	
occurs	
	

Granted	 Printer	ISR	
Execute	

At	t=15	 Communica3on	
line	interrupt	
occurs	
	

Granted	
(high	
priority)	

Communica3on	
ISR	Execute	&	
Printer	ISR		wait	

At	t=20	 Disk	Interrupt	
occurs	

Rejected	
(low	
priority)	

Wait	

At	t=25	 Communica3on	
ISR	completes	

At	t=25	 Disk	execute	

At	t=35	 Disk	ISR	
completes	

At	t=35	 Printer	ISR	
resumes	

At	t=40	 Printer	ISR	
completes	



Interconnec3on	Structures	
•  A	 computer	 consists	 of	 a	 set	 of	 components	 or	modules	 of	 three	 basic	

types	–	Processor,	Memory	&	I/O	that	communicate	with	each	other.	

•  The	 collec3on	 of	 paths	 connec3ng	 the	 various	 modules	 is	 called	 as	
Interconnec2on	Structure.	



Interconnec3on	Structures	–	Computer	Modules	



Memory	
•  It	 consist	 of	 N	 words	 of	 equal	 length.	 Each	 word	 is	 assigned	 a	 unique	

numerical	address	(0,1,……N-1).	

•  A	word	can	be	read	from	or	wriZen	into	the	memory.	
•  Receives	and	sends	data	

•  Receives	addresses	(of	loca3ons)	

•  Receives	control	signals		

— Read	
— Write	
— Timing	



Input/Output	
•  Two	opera3ons	Read	&	Write.	

•  I/O	Module	Can	Control	More	Than	One	External	Device.	Each	 interface	
to	 an	 external	 device	 is	 referred	 to	 as	 port	 &	 has	 unique	 address	 (0,1,
….M-1)	

•  Output	

— Receive	data	from	computer	

— Send	data	to	peripheral	
•  Input	

— Receive	data	from	peripheral	
— Send	data	to	computer	



Input/Output	
•  Receive	control	signals	from	computer	

•  Send	control	signals	to	peripherals	
— e.g.	spin	disk	

•  Receive	addresses	from	computer	

— e.g.	port	number	to	iden3fy	peripheral	

•  Send	interrupt	signals	(control)	



Processor	
•  Reads	instruc3on	and	data	

•  Writes	out	data	(aMer	processing)	
•  Sends	control	signals	to	other	units	to	control	the	overall	opera3on	of	the	

system.	

•  Receives	interrupts	signals	



Interconnec3on	Structures	
•  Interconnec3on	Structures	must	support	the	following	types	of	transfers:	

— Memory	to	processor:	Processor	reads	an	instruc3on	or	a	unit	of	data	
from	memory.	

— Processor	to	Memory:	Processor	writes	a	unit	of	data	to	memory.	

—  I/O	to	Processor:	Processor	reads	data	from	an	I/O	device	via	an	I/O	
module.	

— Processor	to	I/O:	Processor	sends	data	to	the	I/O	device.	
—  I/O	 to	 or	 from	 Memory:	 I/O	 module	 is	 allowed	 to	 exchange	 data	

directly	 with	 memory,	 without	 going	 through	 the	 processor,	 using	
direct	memory	access	(DMA).	



Buses	
•  A	communica3on	pathway	connec3ng	two	or	more	devices.	

•  A	key	characteris3c	of	a	bus	 is	 that	 it	 is	 a	 shared	 transmission	medium.	
Mul3ple	devices	connect	to	the	bus,	and	a	signal	transmiZed	by	any	one	
device	is	available	for	recep3on	by	all	other	devices	aZached	to	the	bus.	If	
two	 devices	 transmit	 during	 the	 same	 3me	 period,	 their	 signals	 will	
overlap	 and	 become	 garbled.	 Thus,	 only	 one	 device	 at	 a	 3me	 can	
successfully	transmit.	

•  Each	 line	 is	 capable	 of	 transmilng	 signals	 represen3ng	 binary	 1	 and	
binary	0.	For	example,	an	8-bit	unit	of	data	can	be	transmiZed	over	eight	
bus	lines.	

•  A	bus	that	connects	major	computer	components	(processor,	memory,	I/
O)	is	called	a	system	bus	



Bus	Interconnec3on	Scheme	



Data	Bus	
•  The	 data	 lines	 provide	 a	 path	 for	moving	 data	 among	 system	modules.	

These	lines,	collec3vely,	are	called	the	data	bus.		

•  The	data	bus	may	consist	of	32,	64,	128,	or	even	more	separate	lines,	the	
number	of	 lines	being	referred	to	as	the	width	of	the	data	bus.	Because	
each	 line	can	carry	only	1	bit	at	a	3me,	 the	number	of	 lines	determines	
how	many	bits	can	be	transferred	at	a	3me.		

•  For	example,	if	the	data	bus	is	32	bits	wide	and	each	instruc3on	is	64	bits	
long,	 then	 the	processor	must	 access	 the	memory	module	 twice	 during	
each	instruc3on	cycle.	



Address	bus	
•  The	address	 lines	are	used	to	designate	the	source	or	des3na3on	of	the	

data	on	the	data	bus.	

•  For	example,	if	the	processor	wishes	to	read	a	word	(8,	16,	or	32	bits)	of	
data	 from	 memory,	 it	 puts	 the	 address	 of	 the	 desired	 word	 on	 the	
address	lines.	

•  Furthermore,	 the	 address	 lines	 are	 generally	 also	 used	 to	 address	 I/O	
ports.		

•  Typically,	the	higher-order	bits	are	used	to	select	a	par3cular	module	on	
the	 bus,	 and	 the	 lower-order	 bits	 select	 a	memory	 loca3on	 or	 I/O	 port	
within	the	module.	



Control	Bus	
•  The	control	 lines	are	used	 to	 control	 the	access	 to	and	 the	use	of	 the	data	and	

address	lines.	

•  Typical	control	lines	include:	
—  Memory	write:	Causes	data	on	the	bus	to	be	wriZen	into	the	addressed	loca3on	

—  Memory	read:	Causes	data	from	the	addressed	loca3on	to	be	placed	on	the	bus		

—  I/O	write:	Causes	data	on	the	bus	to	be	output	to	the	addressed	I/O	port			
—  I/O	read:	Causes	data	from	the	addressed	I/O	port	to	be	placed	on	the	bus		

—  Transfer	ACK:	Indicates	that	data	have	been	accepted	from	or	placed	on	the	bus		

—  Bus	request:	Indicates	that	a	module	needs	to	gain	control	of	the	bus		

—  Bus	grant:	Indicates	that	a	reques3ng	module	has	been	granted	control	of	the	bus		

—  Interrupt	request:	Indicates	that	an	interrupt	is	pending			
—  Interrupt	ACK:	Acknowledges	that	the	pending	interrupt	has	been	recognized			
—  Clock:	Is	used	to	synchronize	opera3ons		
—  Reset:	Ini3alizes	all	modules	

•  Timing	signals	indicate	the	validity	of	data	and	address	informa3on.		

•  Command	signals	specify	opera3ons	to	be	performed.	
	



Bus	

•  This	 arrangement	 is	most	 convenient.	A	 small	 computer	 system	may	be	
acquired	 and	 then	 expanded	 later	 (more	memory,	more	 I/O)	 by	 adding	
more	boards.	 If	 a	 component	on	 a	board	 fails,	 that	 board	 can	easily	 be	
removed	and	replaced.	

Typical	Physical	Realiza3on	of	a	Bus	Architecture	



Mul3ple-Bus	Hierarchies	
•  If	a	great	number	of	devices	are	connected	to	the	bus,	performance	will	

suffer.	There	are	two	main	causes:		

—  In	general,	the	more	devices	aZached	to	the	bus,	the	greater	the	bus	
length	 and	 hence	 the	 greater	 the	 propaga3on	 delay.	 This	 delay	
determines	the	3me	it	takes	for	devices	to	coordinate	the	use	of	the	
bus.	 When	 control	 of	 the	 bus	 passes	 from	 one	 device	 to	 another	
frequently,	 these	 propaga3on	 delays	 can	 no3ceably	 affect	
performance.		

— The	 bus	 may	 become	 a	 boZleneck	 as	 the	 aggregate	 data	 transfer	
demand	approaches	the	capacity	of	the	bus.		

•  Most	systems	use	MulDple	Buses	to	overcome	these	problems.	



Tradi3onal	(ISA)	(with	cache)	



High	Performance	Bus	



Elements	of	Bus	Design	



Bus	Types	
•  Dedicated	

— Separate	data	&	address	lines	
•  Mul3plexed	

— Shared	lines	
— Address	valid	or	data	valid	control	line	
— Advantage	-	fewer	lines	which	saves	space	and	cost.	
— Disadvantages	

–  More	complex	circuitry	is	needed	within	each	module.		

–  Also,	 there	 is	 a	 poten3al	 reduc3on	 in	 performance	 because	
certain	 events	 that	 share	 the	 same	 lines	 cannot	 take	 place	 in	
parallel.	



Bus	Arbitra3on	
•  Only	 one	 unit	 at	 a	 3me	 can	 successfully	 transmit	 over	 the	 bus,	 some	

method	of	arbitra3on	is	needed.		

•  Arbitra3on	may	be	centralised	or	distributed	
•  Centralised	 ArbitraDon:	A	 single	 hardware	 device,	 referred	 to	 as	 a	 bus	

controller	 or	 arbiter,	 is	 responsible	 for	 alloca3ng	 3me	 on	 the	 bus.	 The	
device	may	be	a	separate	module	or	part	of	the	processor.		

•  Distributed	 ArbitraDon:	 There	 is	 no	 central	 controller.	 Rather,	 each	
module	 contains	 access	 control	 logic	 and	 the	 modules	 act	 together	 to	
share	the	bus.		

•  With	both	methods	of	arbitra3on,	the	purpose	is	to	designate	one	device,	
either	 the	processor	or	an	 I/O	module,	as	master.	The	master	may	then	
ini3ate	a	data	transfer	(e.g.,	read	or	write)	with	some	other	device,	which	
acts	as	slave	for	this	par3cular	exchange.	



Timing	
•  Co-ordina3on	of	events	on	bus.	

•  Synchronous	Timing:	
— Events	determined	by	clock	signals	

— Control	Bus	includes	clock	line	
— A	single	1-0	is	a	bus	cycle	
— All	devices	can	read	clock	line	
— Usually	sync	on	leading	edge	
— Usually	a	single	cycle	for	an	event	

•  Asynchronous	Timing:	The	occurrence	of	one	event	on	a	bus	follows	and	
depends	on	the	occurrence	of	a	previous	event.	



Synchronous	Timing	Diagram	

Places memory address	

asserts	

1 

issues	
2 

issues	
3 

Places data	
4 

Processor Reads the data 
from the data lines and 
drops the read signal.	

5 

Places data	
6 

issues	
7 

Memory module copies 
the information from the 
data lines 

8 



Synchronous	Timing	
•  The	processor	places	a	memory	address	on	 the	address	 lines	during	 the	

first	clock	cycle	and	may	assert	various	status	lines.		

•  Once	 the	 address	 lines	 have	 stabilized,	 the	 processor	 issues	 an	 address	
enable	signal.		

•  For	a	read	opera3on,	the	processor	issues	a	read	command	at	the	start	of	
the	second	cycle.		

•  A	memory	module	recognizes	the	address	and,	aMer	a	delay	of	one	cycle,	
places	the	data	on	the	data	lines.	

•  The	 processor	 reads	 the	 data	 from	 the	 data	 lines	 and	 drops	 the	 read	
signal.	

•  For	a	write	opera3on,	the	processor	puts	the	data	on	the	data	lines	at	the	
start	of	the	second	cycle,	and	issues	a	write	command	aMer	the	data	lines	
have	stabilized.	

•  The	memory	module	 copies	 the	 informa3on	 from	 the	 data	 lines	 during	
the	third	clock	cycle.	



Asynchronous	Timing	–	Read	Diagram	

Places Status signals	
1 

Places address	
2 

Memory module Places data	
3 

Master Read data from data lines	
4 

Master Deasserts 
read signal	

5 

Memory module drop the 
data and acknowledge lines	

6 

Master removes the address information	
7 



Asynchronous	Timing	–	Read	Diagram	
•  The	processor	places	address	and	status	signals	on	the	bus.		

•  AMer	 pausing	 for	 these	 signals	 to	 stabilize,	 it	 issues	 a	 read	 command,	
indica3ng	the	presence	of	valid	address	and	control	signals.	

•  The	 appropriate	memory	 decodes	 the	 address	 and	 responds	 by	 placing	
the	data	on	the	data	line.		

•  Once	 the	 data	 lines	 have	 stabilized,	 the	 memory	 module	 asserts	 the	
acknowledged	line	to	signal	the	processor	that	the	data	are	available.		

•  Once	 the	master	has	 read	 the	data	 from	the	data	 lines,	 it	deasserts	 the	
read	signal.		

•  This	causes	the	memory	module	to	drop	the	data	and	acknowledge	lines.		

•  Finally,	 once	 the	 acknowledge	 line	 is	 dropped,	 the	master	 removes	 the	
address	informa3on.	



Asynchronous	Timing	–	Write	Diagram	



Asynchronous	Timing	–	Write	Diagram	
•  The	master	places	the	data	on	the	data	line	at	the	same	3me	that	is	puts	

signals	on	the	status	and	address	lines.		

•  The	memory	module	responds	to	the	write	command	by	copying	the	data	
from	the	data	lines	and	then	asser3ng	the	acknowledge	line.	

•  The	master	 then	 drops	 the	write	 signal	 and	 the	memory	module	 drops	
the	acknowledge	signal.	



Comparison	
•  Synchronous	3ming	 is	simpler	to	 implement	and	test.	However,	 it	 is	 less	

flexible	than	asynchronous	3ming.	Because	all	devices	on	a	synchronous	
bus	 are	3ed	 to	 a	 fixed	 clock	 rate,	 the	 system	 cannot	 take	 advantage	of	
advances	in	device	performance.	

•  With	asynchronous	3ming,	a	mixture	of	slow	and	fast	devices,	using	older	
and	newer	technology,	can	share	a	bus.	



BUS	WIDTH	
•  The	 width	 of	 the	 data	 bus	 has	 an	 impact	 on	 system	 performance:	 The	

wider	 the	 data	 bus,	 the	 greater	 the	 number	 of	 bits	 transferred	 at	 one	
3me.		

•  The	width	of	the	address	bus	has	an	impact	on	system	capacity:	the	wider	
the	 address	 bus,	 the	 greater	 the	 range	 of	 loca3ons	 that	 can	 be	
referenced.	



Data	Transfer	Types	
Bus	 is	 used	 for	 specifying	
the	 address	 and	 then	 for	
transferring	the	data	

For	 read	opera3on,	 there	
is	 a	 wait	 while	 the	 data	
are	being	fetched	

Simply a read followed 
immediately by a write to 
the same address. 	

Write followed immediately 
by a read from the same 
address.	




