


UNIT	II	–	B.	RELATIONAL	MODEL		



Agenda	
•  Structure	of	Rela9onal	Databases	
•  Rela9onal	Algebra	
•  Extended	Rela9onal-Algebra-Opera9ons	
•  Modifica9on	of	the	Database	
•  Views	
•  Tuple	Rela9onal	Calculus	
•  Domain	Rela9onal	Calculus	
•  Forma9on	of	Queries	



Rela9onal	Model	
•  Rela9onal	Model	includes:	Rela%ons,	Tuples,	A/ributes,	keys	and	foreign	

keys.	

— Rela/on:	A	two	dimensional	table	make	up	of	tuples	(This	is	a	simple	
defini9on	that	we	will	define	more	rigorously	in	a	later	chapter).	

— Tuple:	A	row	of	data	in	a	rela9on	made	up	of	one	or	more	aRributes.	
— A4ribute:	A	characteris9c	of	the	rela9on	contained	in	a	tuple.	



Rela9onal	Model	



A	Sample	Rela9onal	Database	



Basic	Structure	
•  Formally,	given	sets	D1,	D2,	….	Dn	,	a	rela/on	r	is	a	subset	of		

D1	x		D2		x	…	x	Dn	
Thus	a	rela9on	is	a	set	of	n-tuples	(a1,	a2,	…,	an)	where		
each	ai		∈	Di	

•  Example:		if	
	 	customer-name	=	{Jones,	Smith,	Curry,	Lindsay}	

	customer-street	=	{Main,	North,	Park}	
	customer-city					=	{Harrison,	Rye,	PiRsfield}	

Then	r	=	{			(Jones,	Main,	Harrison),		
																			(Smith,	North,	Rye),	
																			(Curry,	North,	Rye),	
																			(Lindsay,	Park,	PiRsfield)}	
	is	a	rela9on	over	customer-name	x	customer-street	x	customer-city	



ARribute	Types	
•  Each	aRribute	of	a	rela9on	has	a	name	
•  The	set	of	allowed	values	 for	each	aRribute	 is	 called	 the	domain	 of	 the	

aRribute	
•  ARribute	values	are	(normally)	required	to	be	atomic,	that	is,	indivisible	

— E.g.	mul9valued	aRribute	values	are	not	atomic	
— E.g.	composite	aRribute	values	are	not	atomic	

•  The	special	value	null		is	a	member	of	every	domain	
•  The	null	value	causes	complica9ons	in	the	defini9on	of	many	opera9ons	

—  	we	shall	ignore	the	effect	of	null	values	in	our	main	presenta9on	and	
consider	their	effect	later	



Rela9on	Schema	
•  A1,	A2,	…,	An	are	a/ributes	
•  R	=	(A1,	A2,	…,	An	)	is	a	rela%on	schema	

	 	E.g.			Customer-schema	=	
																					(customer-name,	customer-street,	customer-city)	

•  r(R)	is	a	rela%on	on	the	rela%on	schema	R	
	 	E.g. 	customer	(Customer-schema)	



Rela9on	Instance	
•  The	current	values	(rela%on	instance)	of	a	rela9on	are	specified	by	a	

table	
•  An	element	t	of	r	is	a	tuple,	represented	by	a	row	in	a	table	

Jones 
Smith 
Curry 

Lindsay 

customer-name 
Main 
North 
North 
Park 

customer-street 
Harrison 

Rye 
Rye 

Pittsfield 

customer-city 

customer 

attributes 
(or columns) 

tuples 
(or rows) 



Keys	
•  Let	K	⊆	R	
•  K	is	a	superkey	of	R	if	values	for	K	are	sufficient	to	iden9fy	a	unique	tuple	

of	each	possible	rela9on	r(R)		
— by	“possible	r”	we	mean	a	rela9on	r	that	could	exist	in	the	enterprise	

we	are	modeling.	
— Example:		{customer-name,	customer-street}	and	

																	{customer-name}		
are	 both	 superkeys	 of	 Customer,	 if	 no	 two	 customers	 can	 possibly	
have	the	same	name.	

•  K	is	a	candidate	key	if	K	is	minimal	
Example:	 	 {customer-name}	 is	a	candidate	key	for	Customer,	since	 it	 is	a	
superkey	(assuming	no	two	customers	can	possibly	have	the	same	name),	
and	no	subset	of	it	is	a	superkey.	



Determining	Keys	from	E-R	Sets	
•  Strong	en/ty	set.		The	primary	key	of	the	en9ty	set	becomes	the	primary	

key	of	the	rela9on.	
•  Weak	en/ty	set.	 	The	primary	key	of	the	rela9on	consists	of	the	union	of	

the	primary	key	of	the	strong	en9ty	set	and	the	discriminator	of	the	weak	
en9ty	set.	

•  Rela/onship	set.	 	The	union	of	the	primary	keys	of	the	related	 	 	 	en9ty	
sets	becomes	a	super	key	of	the	rela9on.	
— For	 binary	 many-to-one	 rela9onship	 sets,	 the	 primary	 key	 of	 the	

“many”	en9ty	set	becomes	the	rela9on’s	primary	key.	
— For	 one-to-one	 rela9onship	 sets,	 the	 rela9on’s	 primary	 key	 can	 be	

that	of	either	en9ty	set.	
— For	 many-to-many	 rela9onship	 sets,	 the	 union	 of	 the	 primary	 keys	

becomes	the	rela9on’s	primary	key	



E-R	Diagram	for	the	Banking	
Enterprise	



Schema	Diagram	for	the	Banking	Enterprise	



Example	
•  Design	 a	 rela9onal	 database	 corresponding	 to	 the	 E-R	 diagram	 given	

below.	

•  Sol.	The	rela9onal	database	schema	is	given	below.		
— person	(driver-id,	name,	address)		
— car	(license,	year,	model)		
— accident	(report-number,	loca9on,	date)		
— owns	(driver-id,	license)		
— par9cipated	(report-number,	driver-id,	license,	damage-amount)	



Query	Languages	
•  Language	in	which	user	requests	informa9on	from	the	database.	
•  Categories	of	languages	

— procedural	
— non-procedural	

•  “Pure”	languages:	
— Rela9onal	Algebra	
— Tuple	Rela9onal	Calculus	
— Domain	Rela9onal	Calculus	

•  Pure	languages	form	underlying	basis	of	query	languages	that	people	use.	



Rela9onal	Algebra	
•  Procedural	language	
•  Six	basic	operators	

— select	
— project	
— Union	
—  Intersec9on	
— set	difference	
— Cartesian	product	
— rename	

•  The	 operators	 take	 one	 or	 more	 rela9ons	 as	 inputs	 and	 give	 a	 new	
rela9on	as	a	result.	



Select	Opera9on	

•  Nota9on:		σ	p(r)	
•  p	is	called	the	selec9on	predicate	
•  Defined	as:	

	 	 		σp(r)	=	{t	|	t	∈	r	and	p(t)}	
	 Where	 p	 is	 a	 formula	 in	 proposi9onal	 calculus	 consis9ng	 of	 terms	
connected	by	:		
	∧	(and),	∨	(or),	¬	(not)	
Each	term	is	one	of:	
	 	<aRribute> 	op	 	<aRribute>	or	<constant>	

					where	op	is	one	of:		=,	≠,	>,	≥.	<.	≤	
•  Example	of	selec9on:	

		σ	branch-name=“Perryridge”(account)	



Select	Opera9on	–	Example1	



Select	Opera9on	–	Example	2	&	3	
•  Select	Electrical	Engineers	from	Employee	Rela9on.	
•  Sol.	

•  Select	Electrical	or	mechanical	engineers	from	Employee	Rela9on.	
•  Sol.	

ENO ENAME TITLE 

E1 J. Doe Elect. Eng 
E6 L. Chu Elect. Eng. 

σ TITLE='Elect. Eng.'(EMP) 
ENO ENAME TITLE 
E1 J. Doe Elect. Eng. 
E2 M. Smith Syst. Anal. 
E3 A. Lee Mech. Eng. 
E4 J. Miller Programmer 
E5 B. Casey Syst. Anal. 
E6 L. Chu Elect. Eng. 
E7 R. Davis Mech. Eng. 
E8 J. Jones Syst. Anal. 

EMP 

σ TITLE='Elect. Eng.’ ∨ TITLE=‘Mech.Eng’(EMP) 



Select	Opera9on	–	Example4	
•  Find	the	projects	with	budget	less	than	equal	to	$200,000	&	greater	than	

$200,000	 from	 the	 rela9on	 PROJ	 using	 select	 opera9on.	 Define	 the	
rela9ons	PROJ1	&	PROJ2	based	on	Budget.	

•  Sol: 	PROJ1		=	σBUDGET<=200000
(PROJ)	

 PROJ2		=	σBUDGET>200000
(PROJ)	

PROJ1 

PNO PNAME LOC 

P1 Instrumentation 150000 Montreal 

P2 Database Develop. 135000 New York 

BUDGET 
PNO PNAME BUDGET LOC 

P3  CAD/CAM 250000 New York 

P4 Maintenance 310000 Paris 

P5 CAD/CAM 500000 Boston 

PROJ2 

New York 
New York 

PROJ 

PNO PNAME BUDGET LOC 

P1 Instrumentation 150000 Montreal 

P3  CAD/CAM 250000 
P2 Database Develop. 135000 

P4 Maintenance 310000 Paris 
P5 CAD/CAM 500000 Boston 



Select	Opera9on	–	Example5	
•  If	 a	 new	 tuple	with	 a	 BUDGET	 value	 of,	 $600,000	 is	 to	 be	 inserted	 into	

PROJ	 of	 previous	 example.	 Define	 the	 rela9ons	 PROJ1,	 PROJ2	 &	 PROJ3	
based	on	Budget.	

•  	Sol: 	 	PROJ1		=	σBUDGET<=200000
(PROJ)	

PROJ2		=	σ200000<BUDGET<=500000
(PROJ)	

PROJ3		=	σBUDGET>500000
(PROJ)	

	
	
 



Select	Opera9on	–	Example6	
•  Consider	 the	 rela9on	 PROJ.	 Using	 select	 opera9on	 define	 the	 rela9ons	

PROJ1	,	PROJ2	&	PROJ3	based	on	Loca9on.	

•  Sol: 	PROJ1		=	σLOC	=	“Montreal”(PROJ)	
	 	PROJ2		=	σLOC	=	“New	York”(PROJ)	
	 	PROJ3		=	σLOC	=	“Paris”(PROJ)	

New York 
New York 

PROJ 

PNO PNAME BUDGET LOC 

P1 Instrumentation 150000 Montreal 

P3  CAD/CAM 250000 
P2 Database Develop. 135000 

P4 Maintenance 310000 Paris 



Select	Opera9on	–	Example6	contd.	

PROJ1 

PNO PNAME BUDGET LOC PNO PNAME BUDGET LOC 

P1 Instrumentation 150000 Montreal P2 Database 
Develop. 135000 New York 

PROJ2 

CAD/CAM 250000 New York 

PNO PNAME BUDGET LOC 

Maintenance P4 310000 Paris 

P3 

PROJ3 



Company	Database	Schema	

P.Query2	

P.Query3	

U.Query3	



Select	Opera9on	–	Example7	&	8	
•  Select the EMPLOYEE tuples whose department number is four.  
Sol.	 	 	σDNO = 4 (EMPLOYEE) 

•  Select the EMPLOYEE tuples whose salary is greater than $30,000.  
Sol.   σSALARY > 30,000 (EMPLOYEE) 



Select	Opera9on	–	Example9	
•  Select the EMPLOYEE tuples whose department number is four and 

whose salary is greater than $25,000 or those employees whose department 
number is five and whose salary is greater than $30,000. 

•  Sol.		



Project	Opera9on	

•  Nota9on:	
	∏A1,	A2,	…,	Ak	(r)	

	where	A1,	A2	are	aRribute	names	and	r	is	a	rela9on	name.	
•  The	result	is	defined	as	the	rela9on	of	k	columns	obtained	by	erasing	the	

columns	that	are	not	listed	
•  Duplicate	rows	removed	from	result,	since	rela9ons	are	sets	
•  E.g.	To	eliminate	the	branch-name	aRribute	of	account	

										∏account-number,	balance	(account)		
	



Project	Opera9on	–	Example1	



Project	Opera9on	–	Example2	
•  List each employee’s first and last name and salary from	 Employee	

Rela9on.	

Sol. 	πLNAME,	FNAME,SALARY(EMPLOYEE)	
Company	database	schema	



Project	Opera9on	–	Example3	
•  List each employee’s sex and salary from	Employee	Rela9on.	

Sol. 	πSEX,SALARY(EMPLOYEE)	 Company	database	schema	



Project	Example4	
•  Select	PNO	&	BUDGET	from	the	rela9on	PROJ.	

•  Sol:	
π PNO,BUDGET(PROJ) 

PNO BUDGET 

P1 150000 
P2 135000 
P3 250000 
P4 310000 
P5 500000 

PROJ 

PNO BUDGET 

P2 135000 

P3 250000 
P4 310000 
P5 500000 

PNAME 

P1 150000 Instrumentation 
Database Develop. 

CAD/CAM 
Maintenance 
CAD/CAM 



Selec9on	with	Projec9on	Example	
•  List each employee’s first and last name and salary from	 Employee	

Rela9on	whose	DNO	is	5	from	the	employee	rela9on.	

•  Sol.	



Union	Opera9on	

•  Nota9on:		r	∪	s	
•  Defined	as:		

	 	r		∪	s	=	{t	|	t	∈	r	or	t	∈	s}	
	
•  For	r	∪	s	to	be	valid.	

	1.		r,	s	must	have	the	same	arity	(same	number	of	aRributes)	
	2.		The	aRribute	domains	must	be	compa%ble	(e.g.,	2nd	column		
						of	r	deals	with	the	same	type	of	values	as	does	the	2nd		
					column	of	s)	

•  E.g.	to	find	all	customers	with	either	an	account	or	a	loan	
				∏customer-name	(depositor)			∪	∏customer-name	(borrower)	



Union	Opera9on	–	Example1	



Union	Opera9on:	Example2	
•  Find	STUDENT		∪	 ΙΝSTRUCTOR.	

•  Sol:	



Union	Opera9on:	Example3	
•  To	retrieve	the	social	security	numbers	of	all	employees	who	either	work	

in	 department	 5	 or	 directly	 supervise	 an	 employee	 who	 works	 in	
department	5,	use	the	union	opera9on.	

	
	
	
	
	
	
	
	

Sol.	 	DEP5_EMPS	←	σDNO=5	(EMPLOYEE)	

	 	RESULT1	←	π	SSN(DEP5_EMPS)	

	 	RESULT2(SSN)	←	π	SUPERSSN(DEP5_EMPS)	
	 	RESULT	←	RESULT1	∪	RESULT2	



Intersec9on	Opera9on	

	



Intersec9on	Opera9on:	Example1	
•  Find	STUDENT	∩ ΙΝSTRUCTOR.	

•  Sol:	



Set	Difference	Opera9on	

•  Nota9on	r	–	s	
•  Defined	as:	

	 		r	–	s		=	{t	|	t	∈	r	and	t	∉	s}		
•  Set	differences	must	be	taken	between	compa%ble	rela9ons.	

— r	and	s	must	have	the	same	arity	
— aRribute	domains	of	r	and	s	must	be	compa9ble	

	



Set	Difference	Opera9on	–	Example1	



Set	Difference	Opera9on	–	Example2	
•  Find	(a)	STUDENT	� ΙΝSTRUCTOR		

							(b)	INSTRUCTOR	–	STUDENT		

•  Sol:	(a)	 	 	 	 	(b)	



Cartesian-Product	Opera9on	
•  Nota9on	r	x	s	
•  Defined	as:	

	 	r	x	s	=	{t	q	|	t	∈	r	and	q	∈	s}	
•  Assume	that	aRributes	of	r(R)	and	s(S)	are	disjoint.		(That	is,		

R	∩	S	=	∅).	
•  If	aRributes	of	r(R)	and	s(S)	are	not	disjoint,	then	renaming	must	be	used.	



Cartesian-Product	Opera9on-Example	



Composi9on	of	Opera9ons	
•  Can	build	expressions	using	mul9ple	opera9ons	
•  Example:		σA=C(r	x	s)	



Rename	Opera9on	
•  Allows	 us	 to	 name,	 and	 therefore	 to	 refer	 to,	 the	 results	 of	 rela9onal-

algebra	expressions.	
•  Allows	us	to	refer	to	a	rela9on	by	more	than	one	name.	
Example:	

	 	 	 	 	ρ	x	(E)	
returns	the	expression	E	under	the	name	X	
If	a	rela9onal-algebra	expression	E	has	arity	n,	then		

																																										ρx	(A1,	A2,	…,	An)	(E)	
returns	the	result	of	expression	E	under	the	name	X,	and	with	the	
aRributes	renamed	to	A1,	A2,	….,	An.	



Example1:	Queries	
•  Consider	 the	 rela9onal	 database	 given	below	where	 the	primary	 keys	 are	

underlined.	Give	an	expression	in	the	rela9onal	algebra	to	express	each	of	
the	following	queries:		

a.	Find	the	names	of	all	employees	who	work	for	First	Bank	Corpora9on.	
Sol.	Πperson-name	(σcompany-name	=	�First	Bank	Corpora9on�	(works))	
	
b.	Find	the	names	and	ci9es	of	residence	of	all	employees	who	work	for	First	

Bank	Corpora9on.	
Sol.			

employee	(person-name,	street,	city)		
works	(person-name,	company-name,	salary)		
company	(company-name,	city)		
manages	(person-name,	manager-name)	



Example1:	Queries	contd.	
c.	 Find	 the	 names,	 street	 address,	 and	 ci9es	 of	 residence	 of	 all	 employees	
who	 work	 for	 First	 Bank	 Corpora9on	 and	 earn	 more	 than	 $10,000	 per	
annum.	
Sol.		
	
	
	
	
d.	Find	the	names	of	all	employees	in	this	database	who	live	in	the	same	city	
as	the	company	for	which	they	work.		
Sol.		
	



Example2:	Banking	Queries	

branch	(branch-name,	branch-city,	assets)	
	
customer	(customer-name,	customer-street,	customer-only)	
	
account	(account-number,	branch-name,	balance)	
	
loan	(loan-number,	branch-name,	amount)	
	
depositor	(customer-name,	account-number)	
	
borrower	(customer-name,	loan-number)	



Example	Queries	
•  Select	all	loans	of	over	$1200	

•  Find the loan number for each loan of an amount greater than $1200 

																								



Example	Queries	
•  Find	 the	names	of	 all	 customers	who	have	 a	 loan,	 an	 account,	 or	 both,	

from	the	bank	

•  Find the names of all customers who have a loan and an  account at bank. 



Example	Queries	
•  Find	 the	 names	 of	 all	 customers	 who	 have	 a	 loan	 at	 the	 Perryridge	

branch.	

•  Find the names of all customers who have a loan at the Perryridge branch 
but do not have an account at any branch of    
    the bank. 



Example	Queries	
•  Find	the	names	of	all	customers	who	have	a	loan	at	the	Perryridge	branch.	

 -  Query 2 
     ∏customer-name(σloan.loan-number = borrower.loan-number( 
             (σbranch-name = “Perryridge”(loan)) x  borrower)) 

 

� Query 1 
  ∏customer-name(σbranch-name = “Perryridge” ( 
  σborrower.loan-number = loan.loan-number(borrower x loan))) 

 



Example	Queries	
Find	the	largest	account	balance	
•  Rename	account	rela9on	as	d	
•  The	query	is:	
						

∏balance(account) - ∏account.balance 
    (σaccount.balance < d.balance (account x ρd (account))) 



Summary:	Rela9on	Algebra	
•  A	basic	expression	 in	 the	rela9onal	algebra	consists	of	either	one	of	 the	

following:	
— A	rela9on	in	the	database	
— A	constant	rela9on	

•  Let	 E1	 and	 E2	 be	 rela9onal-algebra	 expressions;	 the	 following	 are	 all	
rela9onal-algebra	expressions:	
— E1	∪	E2	
— E1	-	E2	
— E1	x	E2	
— σp	(E1),	P	is	a	predicate	on	aRributes	in	E1	
— ∏s(E1),	S	is	a	list	consis9ng	of	some	of	the	aRributes	in	E1	
— ρ	x	(E1),	x	is	the	new	name	for	the	result	of	E1	



Addi9onal	opera9ons	
We	define	addi9onal	opera9ons	that	do	not	add	any	power	to	the	
rela9onal	algebra,	but	that	simplify	common	queries.	
•  Natural	join	
•  Division	
•  Assignment	



■     Notation:  r     s 

Natural-Join	Opera9on	

•  Let	r	and	s	be	rela9ons	on	schemas	R	and	S	respec9vely.		
Then,		r					s		is	a	rela9on	on	schema	R	∪	S	obtained	as	follows:	
— Consider	each	pair	of	tuples	tr	from	r	and	ts	from	s.			
—  If	tr	and	ts	have	the	same	value	on	each	of	the	aRributes	in	R	∩	S,	add	

a	tuple	t		to	the	result,	where	
–  t	has	the	same	value	as	tr	on	r	
–  t	has	the	same	value	as	ts	on	s	



Natural	Join	Opera9on	–	Example1	
•  Example1:	

R	=	(A,	B,	C,	D)	
S	=	(E,	B,	D)	
— Result	schema	=	(A,	B,	C,	D,	E)	
— r					s	is	defined	as:	

						∏r.A,	r.B,	r.C,	r.D,	s.E	(σr.B	=	s.B	∧	r.D	=	s.D	(r		x		s))	



Natural	Join	Opera9on	–	Example1	contd..	



Natural	Join	Opera9on	–	Example2	



Natural	Join	Opera9on	–	Example3	



Natural	Join	Opera9on	–	Example4	



Natural	Join	Opera9on	–	Example5	

•  Cartesian	product	of	r1	&	r2.	



Natural	Joins:	Can	be	incomplete	–	Example6	



Natural	Joins:	Can	be	Null	–	Example7	



Division	Opera9on	

•  Suited	to	queries	that	include	the	phrase	“for	all”.	
•  Let	r	and	s	be	rela9ons	on	schemas	R	and	S	respec9vely	where	

— R	=	(A1,	…,	Am,	B1,	…,	Bn)	
— S	=	(B1,	…,	Bn)	
The	result	of		r	÷	s	is	a	rela9on	on	schema	
R	–	S	=	(A1,	…,	Am)	
	
	 	r	÷	s	=	{	t		|		t	∈	∏	R-S(r)	∧	∀	u	∈	s	(	tu	∈	r	)	}		

 r ÷ s  



Division	Opera9on	



Assignment	Opera9on	
•  The	 assignment	 opera9on	 (←)	 provides	 a	 convenient	way	 to	 express	

complex	queries.		
—  	Write	query	as	a	sequen9al	program	consis9ng	of	

–  a	series	of	assignments		
–  followed	by	an	expression	whose	value	 is	displayed	as	a	result	of	 the	

query.	
—  Assignment	must	always	be	made	to	a	temporary	rela9on	variable.	

—  The	result	to	the	right	of	the	←	is	assigned	to	the	rela9on	variable	on	the	ley	
of	the	←.	

—  May	use	variable	in	subsequent	expressions.	



Example	Queries	
•  Find	all	customers	who	have	an	account	from	at	least	the	“Downtown”	

and	the	Uptown”	branches.	

where CN denotes customer-name and BN denotes  
branch-name. 

  

Query 1 
∏CN(σBN=“Downtown”(depositor    account)) ∩ 
        ∏CN(σBN=“Uptown”(depositor    account)) 

Query 2 
 ∏customer-name, branch-name (depositor     account) 
         ÷ ρtemp(branch-name) ({(“Downtown”), 

(“Uptown”)}) 



•  Find	 all	 customers	 who	 have	 an	 account	 at	 all	 branches	 located	 in	
Brooklyn	city.	

Example	Queries	

 ∏customer-name, branch-name (depositor     account) 
 ÷ ∏branch-name (σbranch-city = “Brooklyn” (branch)) 



Extended	Rela9onal-Algebra-Opera9ons	
•  Generalized	Projec9on	
•  Outer	Join	
•  Aggregate	Func9ons	



Generalized	Projec9on	
•  Extends	the	projec9on	opera9on	by	allowing	arithme9c	func9ons	to	be	

used	in	the	projec9on	list.	
	

	∏	F1,	F2,	…,	Fn(E)	
•  E	is	any	rela9onal-algebra	expression	
•  Each	of	F1,	F2,	…,	Fn	 	are	 arithme9c	 expressions	 involving	 constants	 and	

aRributes	in	the	schema	of	E.	
•  Given	rela9on	credit-info(customer-name,	limit,	credit-balance),	find	how	

much	more	each	person	can	spend:		
	 	∏customer-name,	limit	–	credit-balance	(credit-info)	



Aggregate	Func9ons	and	Opera9ons	
•  Aggrega/on	 func/on	 takes	 a	 collec9on	 of	 values	 and	 returns	 a	 single	

value	as	a	result.	
	 	avg:		average	value	

	min:		minimum	value	
	max:		maximum	value	
	sum:		sum	of	values	
	count:		number	of	values	

•  Aggregate	opera/on	in	rela9onal	algebra		

	 		G1,	G2,	…,	Gn	g	F1(	A1),	F2(	A2),…,	Fn(	An)	(E)	
— E	is	any	rela9onal-algebra	expression	
— G1,	G2	…,	Gn	is	a	list	of	aRributes	on	which	to	group	(can	be	empty)	
— Each	Fi	is	an	aggregate	func9on	
— Each	Ai	is	an	aRribute	name	



Aggregate	Opera9on	–	Example	
•  Rela9on	r:	

A B 
α 
α 
β 
β 

α 
β 
β 
β 

C 
7 
7 
3 
10 

g sum(c) (r) 
sum-C 

27 



Aggregate	Opera9on	–	Example	

•  Rela9on	account	grouped	by	branch-name:	

branch-name g sum(balance) (account) 

branch-name account-number balance 
Perryridge 
Perryridge 
Brighton 
Brighton 
Redwood 

A-102 
A-201 
A-217 
A-215 
A-222 

400 
900 
750 
750 
700 

branch-name balance 
Perryridge 
Brighton 
Redwood 

1300 
1500 
700 



Aggregate	Func9ons	(Cont.)	
•  Result	of	aggrega9on	does	not	have	a	name	

— Can	use	rename	opera9on	to	give	it	a	name	
— For	convenience,	we	permit	renaming	as	part	of	aggregate	opera9on	

	

branch-name g sum(balance) as sum-balance (account) 



Outer	Join	
•  An	extension	of	the	join	opera9on	that	avoids	loss	of	informa9on.	
•  Computes	 the	 join	 and	 then	 adds	 tuples	 form	 one	 rela9on	 that	 do	 not	

match	tuples	in	the	other	rela9on	to	the	result	of	the	join.		
•  Uses	null	values:	

— null	signifies	that	the	value	is	unknown	or	does	not	exist		
— All	 comparisons	 involving	 null	 are	 (roughly	 speaking)	 false	 by	

defini9on.	
– Will	study	precise	meaning	of	comparisons	with	nulls	later	



Outer	Join	–	Example	
•  Rela9on	loan	

■  Relation borrower

customer-name loan-number 
Jones 
Smith 
Hayes 

L-170 
L-230 
L-155 

3000 
4000 
1700 

loan-number amount 
L-170 
L-230 
L-260 

branch-name 
Downtown 
Redwood 
Perryridge 



Outer	Join	–	Example	
•  Inner	Join	

	
loan					Borrower	

loan-number amount 
L-170 
L-230 

3000 
4000 

customer-name 
Jones 
Smith 

branch-name 
Downtown 
Redwood 

Jones 
Smith 
null 

loan-number amount 
L-170 
L-230 
L-260 

3000 
4000 
1700 

customer-name branch-name 
Downtown 
Redwood 
Perryridge 

■  Left Outer Join 
    loan          Borrower 



Outer	Join	–	Example	
•  Right	Outer	Join	
							loan										borrower	

loan        borrower 
■  Full Outer Join 

loan-number amount 
L-170 
L-230 
L-155 

3000 
4000 
null 

customer-name 
Jones 
Smith 
Hayes 

branch-name 
Downtown 
Redwood 
null 

loan-number amount 
L-170 
L-230 
L-260 
L-155 

3000 
4000 
1700 
null 

customer-name 
Jones 
Smith 
null 
Hayes 

branch-name 
Downtown 
Redwood 
Perryridge 
null 



Null	Values	
•  It	is	possible	for	tuples	to	have	a	null	value,	denoted	by	null,	for	some	of	

their	aRributes	
•  null	signifies	an	unknown	value	or	that	a	value	does	not	exist.	
•  The	result	of	any	arithme9c	expression	involving	null	is	null.	
•  Aggregate	func9ons	simply	ignore	null	values	

—  Is	an	arbitrary	decision.		Could	have	returned	null	as	result	instead.	
— We	follow	the	seman9cs	of	SQL	in	its	handling	of	null	values	

•  For	 duplicate	 elimina9on	 and	 grouping,	 null	 is	 treated	 like	 any	 other	
value,	and	two	nulls	are	assumed	to	be		the	same	
— Alterna9ve:	assume	each	null	is	different	from	each	other	
— Both	are	arbitrary	decisions,		so	we	simply	follow	SQL	



Null	Values	
•  Comparisons	with	null	values	return	the	special	truth	value	unknown	

—  If	false	was	used	instead	of	unknown,	then				not	(A	<	5)		
															would	not	be	equivalent	to															A	>=	5	

•  Three-valued	logic	using	the	truth	value	unknown:	
— OR:	(unknown	or	true)									=	true,		

							(unknown	or	false)								=	unknown	
							(unknown	or	unknown)	=	unknown	

— AND:			(true	and	unknown)									=	unknown,				
											(false	and	unknown)								=	false,	
											(unknown	and	unknown)	=	unknown	

— NOT:		(not	unknown)	=	unknown	
—  In	SQL	“P	 is	unknown”	evaluates	to	true	 if	predicate	P	evaluates	

to	unknown	
•  Result	of	select		predicate	is	treated	as	false	if	it	evaluates	to	unknown	



Modifica9on	of	the	Database	
•  The	 content	 of	 the	 database	 may	 be	 modified	 using	 the	 following	

opera9ons:	
— Dele9on	
—  Inser9on	
— Upda9ng	

•  All	these	opera9ons	are	expressed	using	the	assignment	operator.	



Dele9on	
•  A	 delete	 request	 is	 expressed	 similarly	 to	 a	 query,	 except	 instead	 of	

displaying	 tuples	 to	 the	user,	 the	 selected	 tuples	are	 removed	 from	 the	
database.	

•  Can	 delete	 only	 whole	 tuples;	 cannot	 delete	 values	 on	 only	 par9cular	
aRributes	

•  A	dele9on	is	expressed	in	rela9onal	algebra	by:	
	 	r	←	r	–	E	
	where	r	is	a	rela9on	and	E	is	a	rela9onal	algebra	query.	



Dele9on	Examples	
•  Delete	all	account	records	in	the	Perryridge	branch.	

■ Delete all accounts at branches located in Needham. 
r1 ← σ branch-city = “Needham” (account      branch) 
r2 ← ∏branch-name, account-number, balance (r1) 
r3 ← ∏ customer-name, account-number (r2     depositor) 
account ← account – r2 
depositor ← depositor – r3 

■ Delete all loan records with amount in the range of 0 to 50 

loan ← loan – σ amount ≥ 0 and amount ≤ 50 (loan) 

account ← account – σ branch-name = “Perryridge” (account) 
 



Inser9on	
•  To	insert	data	into	a	rela9on,	we	either:	

— specify	a	tuple	to	be	inserted	
— write	a	query	whose	result	is	a	set	of	tuples	to	be	inserted	

•  in	rela9onal	algebra,	an	inser9on	is	expressed	by:	
	 	r	←		r		∪		E	
	where	r	is	a	rela9on	and	E	is	a	rela9onal	algebra	expression.	

•  The	 inser9on	 of	 a	 single	 tuple	 is	 expressed	 by	 le{ng	 E	 be	 a	 constant	
rela9on	containing	one	tuple.		



Inser9on	Examples	
•  Insert	 informa9on	in	the	database	specifying	that	Smith	has	$1200	in	

account	A-973	at	the	Perryridge	branch.	

■   Provide as a gift for all loan customers in the Perryridge 
     branch, a $200 savings account.  Let the loan number serve 
     as the account number for the new savings account. 

account ←  account  ∪ {(“Perryridge”, A-973, 1200)} 
depositor ←  depositor  ∪ {(“Smith”, A-973)} 

r1 ← (σbranch-name = “Perryridge” (borrower    loan)) 
account ← account ∪ ∏branch-name, account-number,200 (r1) 
depositor ← depositor ∪ ∏customer-name, loan-number(r1) 



Upda9ng	
•  A	mechanism	to	change	a	value	 in	a	tuple	without	charging	all	values	 in	

the	tuple	
•  Use	the	generalized	projec9on	operator	to	do	this	task	

	 	r	←	∏	F1,	F2,	…,	FI,	(r)	
•  Each	Fi	is	either		

— the	ith	aRribute	of	r,	if	the	ith	aRribute	is	not	updated,	or,	
—  if	 the	 aRribute	 is	 to	 be	 updated	 Fi	 	 is	 an	 expression,	 involving	 only	

constants	and	 the	aRributes	of	 r,	which	gives	 the	new	value	 for	 the	
aRribute	



Update	Examples	
•  Make	interest	payments	by	increasing	all	balances	by	5	percent.	

■   Pay all accounts with balances over $10,000 6 percent interest  
     and pay all others 5 percent  

 account ←     ∏ AN, BN, BAL * 1.06 (σ BAL > 10000 (account)) 
                       ∪  ∏AN, BN, BAL * 1.05 (σBAL ≤ 10000 (account)) 
 

account ← ∏ AN, BN, BAL * 1.05 (account) 

where AN, BN and BAL stand for account-number, branch-name and 
balance, respectively. 



Views	
•  In	some	cases,	 it	 is	not	desirable	for	all	users	to	see	the	en9re	logical	

model	(i.e.,	all	the	actual	rela9ons	stored	in	the	database.)	
•  Consider	a	person	who	needs	to	know	a	customer’s	loan	number	but	

has	no	need	to	see	the	loan	amount.		This	person	should	see	a	rela9on	
described,	in	the	rela9onal	algebra,	by		
	 	∏customer-name,	loan-number	(borrower				loan)	

•  Any	rela9on	that	is	not	of	the	conceptual	model	but	is	made	visible	to	
a	user	as	a	“virtual	rela9on”	is	called	a	view.	



View	Defini9on	
•  A	view	is	defined	using	the	create	view	statement	which	has	the	form	

	 	create	view	v	as	<query	expression>		
	 where	 <query	 expression>	 is	 any	 legal	 rela9onal	 algebra	 query	
expression.		The	view	name	is	represented	by	v.	

•  Once	a	view	is	defined,	the	view	name	can	be	used	to	refer	to	the	virtual	
rela9on	that	the	view	generates.	

•  View	defini9on	 is	not	 the	same	as	crea9ng	a	new	rela9on	by	evalua9ng	
the	query	expression			
— Rather,	 a	 view	 defini9on	 causes	 the	 saving	 of	 an	 expression;	 the	

expression	is	subs9tuted	into	queries	using	the	view.	



View	Examples	
•  Consider	 the	 view	 (named	 all-customer)	 consis9ng	 of	 branches	 and	

their	customers.	

■   We can find all customers of the Perryridge branch by writing: 

create view all-customer as 
  ∏branch-name, customer-name (depositor    account) 
           ∪ ∏branch-name, customer-name (borrower    loan) 

       ∏customer-name  
 (σbranch-name = “Perryridge” (all-customer))   



Updates	Through	View	
•  Database	 modifica9ons	 expressed	 as	 views	 must	 be	 translated	 to	

modifica9ons	of	the	actual	rela9ons	in	the	database.	
•  Consider	 the	person	who	needs	 to	 see	all	 loan	data	 in	 the	 loan	 rela9on	

except	amount.		The	view	given	to	the	person,	branch-loan,	is	defined	as:		
	 	 	create	view	branch-loan	as	
	 	 	 	∏branch-name,	loan-number	(loan)	

•  Since	 we	 allow	 a	 view	 name	 to	 appear	 wherever	 a	 rela9on	 name	 is	
allowed,	the	person	may	write:	

	
	 	branch-loan	←	branch-loan	∪	{(“Perryridge”,	L-37)}	
		



Updates	Through	Views	(Cont.)	
•  The	 previous	 inser9on	 must	 be	 represented	 by	 an	 inser9on	 into	 the	

actual	rela9on	loan	from	which	the	view	branch-loan	is	constructed.	
•  An	inser9on	into	 loan	requires	a	value	for	amount.	The	inser9on	can	be	

dealt	with	by	either.	
— rejec9ng	the	inser9on	and	returning	an	error	message	to	the	user.	
—  inser9ng	a	tuple	(“L-37”,	“Perryridge”,	null)	into	the	loan	rela9on	

•  Some	updates	 through	 views	 are	 impossible	 to	 translate	 into	 database	
rela9on	updates	
— create	view	v	as	σbranch-name	=	“Perryridge”	(account))	
					v	←	v	∪	(L-99,	Downtown,	23)	

•  Others	cannot	be	translated	uniquely	
— all-customer	←	all-customer		∪	{(“Perryridge”,	“John”)}	

–  Have	to	choose	loan	or	account,	and		
create	a	new	loan/account	number!	



Views	Defined	Using	Other	Views	
•  One	view	may	be	used	in	the	expression	defining	another	view		
•  A	view	rela9on	v1	 is	said	to	depend	directly	on	a	view	rela9on	v2	 	 if	v2	 is	

used	in	the	expression	defining	v1	
•  A	view	rela9on	v1	is	said	to	depend	on	view	rela9on	v2	if	either	v1	depends	

directly	to	v2		or	there	is	a	path	of	dependencies	from	v1	to	v2		
•  A	view	rela9on	v	is	said	to	be	recursive		if	it	depends	on	itself.	



View	Expansion	
•  A	way	to	define	the	meaning	of	views	defined	in	terms	of	other	views.	
•  Let	view	v1	be	defined	by	an	expression	e1	that	may	itself	contain	uses	of	

view	rela9ons.	
•  View	expansion	of	an	expression	repeats	the	following	replacement	step:	

	 	repeat	
	 	Find	any	view	rela9on	vi	in	e1	
	 	Replace	the	view	rela9on	vi	by	the	expression	defining	vi		
	un/l	no	more	view	rela9ons	are	present	in	e1	

•  As	long	as	the	view	defini9ons	are	not	recursive,	this	loop	will	terminate	



Tuple	Rela9onal	Calculus	
•  A	nonprocedural	query	language,	where	each	query	is	of	the	form	

	 	{t	|	P	(t)	}	
•  It	is	the	set	of	all	tuples	t	such	that	predicate	P	is	true	for	t	
•  t	is	a	tuple	variable,	t[A]	denotes	the	value	of	tuple	t	on	aRribute	A	
•  t	∈	r	denotes	that	tuple	t	is	in	rela9on	r	
•  P	is	a	formula	similar	to	that	of	the	predicate	calculus	



Predicate	Calculus	Formula	
1. 	Set	of	aRributes	and	constants	
2. 	Set	of	comparison	operators:		(e.g.,	<,	≤,	=,	≠,	>,	≥)	
3. 	Set	of	connec9ves:		and	(∧),	or	(v)‚	not	(¬)	
4. 	Implica9on	(⇒):	x	⇒	y,	if	x	is	true,	then	y	is	true	

	 	 	 	x	⇒	y	≡ ¬x	v	y	
5. 	Set	of	quan9fiers:	

�  ∃ t	∈ r	(Q(t))	≡ ”there	exists”	a	tuple	in	t	in	rela9on	r	
																								such	that	predicate	Q(t)	is	true	

�  ∀t	∈ r	(Q(t))	≡ Q	is	true	“for	all”	tuples	t	in	rela9on	r	



Banking	Example	
•  branch	(branch-name,	branch-city,	assets)		

•  customer	(customer-name,	customer-street,	customer-city)		

•  account	(account-number,	branch-name,	balance)		

•  loan	(loan-number,	branch-name,	amount)	

•  depositor	(customer-name,	account-number)	

•  borrower	(customer-name,	loan-number)	



Example	Queries	
•  Find	the	loan-number,	branch-name,	and	 	amount	for	loans	of	over	

$1200	

■ Find the loan number for each loan of an amount greater than $1200 

Notice that a relation on schema [loan-number] is implicitly defined by the 
query 
 

{t | ∃ s ∈ loan (t[loan-number] = s[loan-number] ∧ s [amount] > 1200)} 

{t | t ∈ loan ∧ t [amount] > 1200} 



Example	Queries	
•  Find	the	names	of	all	customers	having	a	loan,	an	account,	or	both	at	

the	bank	

{t | ∃s ∈ borrower( t[customer-name] = s[customer-name]) 
      ∧ ∃u ∈ depositor( t[customer-name] = u[customer-name]) 

■    Find the names of all customers who have a loan and an account  
      at the bank 

{t | ∃s ∈ borrower( t[customer-name] = s[customer-name]) 
     ∨ ∃u ∈ depositor( t[customer-name] = u[customer-name]) 



Example	Queries	
•  Find	the	names	of	all	customers	having	a	loan	at	the	Perryridge	branch	

{t | ∃s ∈ borrower( t[customer-name] = s[customer-name] 
       ∧ ∃u ∈ loan(u[branch-name] = “Perryridge” 
                           ∧  u[loan-number] = s[loan-number])) 
       ∧ not ∃v ∈ depositor (v[customer-name] =  
                                                      t[customer-name]) } 

■   Find the names of all customers who have a loan at the  
     Perryridge branch, but no account at any branch of the bank 

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name]  
     ∧ ∃u ∈ loan(u[branch-name] = “Perryridge” 
                         ∧  u[loan-number] = s[loan-number]))} 



Example	Queries	
•  Find	 the	 names	 of	 all	 customers	 having	 a	 loan	 from	 the	 Perryridge	

branch,	and	the	ci9es	they	live	in	

{t | ∃s ∈ loan(s[branch-name] = “Perryridge” 
        ∧ ∃u ∈ borrower (u[loan-number] = s[loan-number] 

     ∧  t [customer-name] = u[customer-name]) 
            ∧ ∃ v ∈ customer (u[customer-name] = v[customer-name] 

                                  ∧  t[customer-city] = v[customer-city])))} 
 



Example	Queries	
•  Find	the	names	of	all	customers	who	have	an	account	at	all	branches	

located	in	Brooklyn:	

{t | ∃ c ∈ customer (t[customer.name] = c[customer-name]) ∧ 
       ∀ s ∈ branch(s[branch-city] = “Brooklyn” ⇒  

           ∃ u ∈ account ( s[branch-name] = u[branch-name] 
           ∧ ∃ s ∈ depositor (  t[customer-name] = s[customer-name] 
                             ∧  s[account-number] = u[account-number] )) )} 



Safety	of	Expressions	
•  It	 is	 possible	 to	 write	 tuple	 calculus	 expressions	 that	 generate	 infinite	

rela9ons.	
•  For	example,	{t	|	¬	t  ∈	r}	results	 in	an	infinite	rela9on	if	the	domain	of	

any	aRribute	of	rela9on	r	is	infinite	
•  To	guard	against	the	problem,	we	restrict	the	set	of	allowable	expressions	

to	safe	expressions.	
•  An	 expression	 {t	 |	 P(t)}	 in	 the	 tuple	 rela9onal	 calculus	 is	 safe	 if	 every	

component	of	t	appears	in	one	of	the	rela9ons,	tuples,	or	constants	that	
appear	in	P	
— NOTE:	this	is	more	than	just	a	syntax	condi9on.		

–  E.g.	{	t	|	t[A]=5	∨	true	}	is	not	safe	---	it	defines	an	infinite	set	with	
aRribute	 values	 that	 do	 not	 appear	 in	 any	 rela9on	 or	 tuples	 or	
constants	in	P.		



Domain	Rela9onal	Calculus	
•  A	 nonprocedural	 query	 language	 equivalent	 in	 power	 to	 the	 tuple	

rela9onal	calculus	
•  Each	query	is	an	expression	of	the	form:	
	

	 	 	{	<	x1,	x2,	…,	xn	>	|	P(x1,	x2,	…,	xn)}	
	
— x1,	x2,	…,	xn		represent	domain	variables	
— P	represents	a	formula	similar	to	that	of	the	predicate	calculus	
	



Example	Queries	
•  Find	 the	 loan-number,	 branch-name,	 and	 	 amount	 for	 loans	 of	 over	

$1200	

      {< c, a > | ∃ l (< c, l > ∈ borrower ∧ ∃b(< l, b, a > ∈ loan ∧  
                                                                   b = “Perryridge”))} 
  or {< c, a > | ∃ l (< c, l > ∈ borrower ∧ < l, “Perryridge”, a > ∈ loan)} 

■   Find the names of all customers who have a loan from the  
       Perryridge branch and the loan amount: 

   {< c > | ∃ l, b, a (< c, l > ∈ borrower ∧ < l, b, a > ∈ loan ∧ a > 1200)} 

■    Find the names of all customers who have a loan of over $1200 

 {< l, b, a > | < l, b, a > ∈ loan ∧ a > 1200} 



Example	Queries	
•  Find	the	names	of	all	customers	having	a	loan,	an	account,	or	both	at	

the	Perryridge	branch:	

{< c > | ∃ s, n (< c, s, n > ∈ customer) ∧ 
            ∀ x,y,z(< x, y, z > ∈ branch ∧ y = “Brooklyn”) ⇒ 
                ∃ a,b(< x, y, z > ∈ account ∧ < c,a > ∈ depositor)}  

■   Find the names of all customers who have an account at all  
     branches located in Brooklyn: 

{< c > | ∃ l ({< c, l > ∈ borrower  
                 ∧ ∃ b,a(< l, b, a > ∈ loan ∧ b = “Perryridge”)) 
       ∨ ∃ a(< c, a > ∈ depositor 
                 ∧ ∃ b,n(< a, b, n > ∈ account ∧ b = “Perryridge”))} 



Safety	of	Expressions	
	 	 	{	<	x1,	x2,	…,	xn	>	|	P(x1,	x2,	…,	xn)}	
	

is	safe	if	all	of	the	following	hold:	
	 1.	 All	 values	 that	 appear	 in	 tuples	 of	 the	 expression	 are	 values	
	 	 from	 dom(P)	 (that	 is,	 the	 values	 appear	 either	 in	 P	 or	 in	 a	 tuple	
		of	a	rela9on	men9oned	in	P).	

	 	 2.	 For	 every	 “there	 exists”	 subformula	 of	 the	 form	 ∃	 x	 (P1(x)),	 the	
	 	 subformula	 is	 true	 if	 and	 only	 if	 there	 is	 a	 value	 of	 x	 in	 dom(P1)
		such	that	P1(x)	is	true.	

	 	 	 	 	 3.	 For	 every	 “for	 all”	 subformula	 of	 the	 form	 ∀x	 (P1	 (x)),	 the						
		 	 	 subformula	 is	 true	 if	 and	 only	 if	P1(x)	 is	 true	 for	 all	 values	 x	 	
			from	dom	(P1).	



End	of	Chapter	3	



Result of σ branch-name = “Perryridge” (loan) 



Loan Number and the Amount of the 
Loan 



Names of All Customers Who Have 
Either a Loan or an Account 



Customers With An Account But No Loan 



Result of borrower × loan 



Result of σ branch-name = “Perryridge” (borrower ×  
loan) 



Result of Πcustomer-name 



Result of the Subexpression 



Largest Account Balance in the Bank 



Customers Who Live on the Same Street and In 
the Same City as Smith 



Customers With Both an Account and a 
Loan at the Bank 



Result of Πcustomer-name, loan-number, amount 
(borrower      loan) 



Result of Πbranch-name(σcustomer-city = 

“Harrison”(customer     account      depositor)) 



Result of Πbranch-name(σbranch-city = 
“Brooklyn”(branch)) 



Result of Πcustomer-name, branch-name(depositor     
account) 



The credit-info Relation 



Result of Πcustomer-name, (limit – credit-balance) as 

credit-available(credit-info). 



The pt-works Relation 



The pt-works Relation After Grouping 



Result of branch-name ς sum(salary) (pt-works) 



Result of branch-name ς sum salary, max(salary) as 

max-salary (pt-works) 



The employee and ft-works Relations  



The Result of employee     ft-works 



The Result of employee       ft-works 



Result of employee       ft-works  



Result of employee       ft-works 



Tuples Inserted Into loan and borrower 



Names of All Customers Who Have a 
Loan at the Perryridge Branch 



E-R Diagram 



The branch Relation 



The loan Relation 



The borrower Relation 




