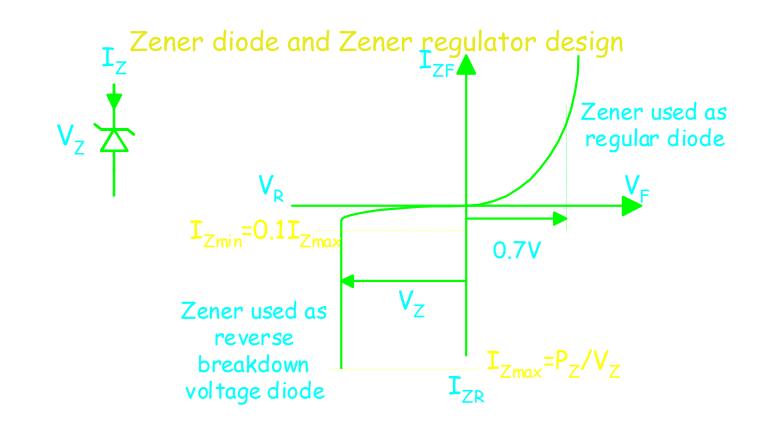
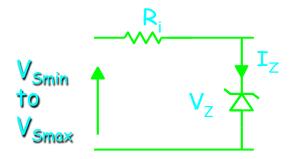


Istrawberrydevelopers Istrawberry_app


For more vísít: Strawberrydevelopers.weebly.com

Zener Diode and Zener Voltage Regulator


Function of Voltage Regulator

Regulated power supply = output dc is constant (stable) at different loads or at varying ac supply conditions

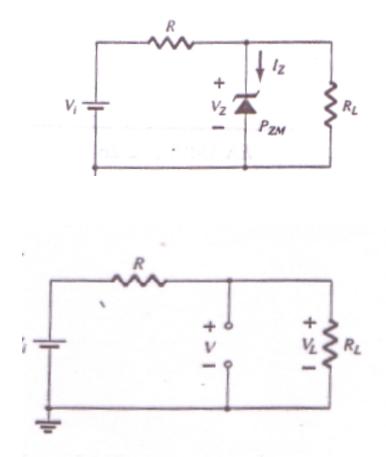
Zener diode

Zener diode design conditions

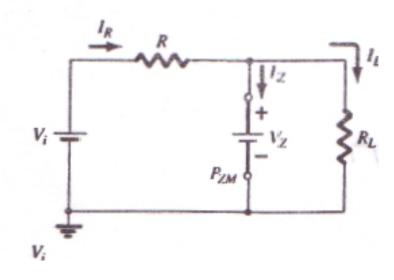
- Whether input voltage is V_{Smin} or V_{Smax} , the output voltage will be constant at Zener breakdown voltage V_Z

• Constant output voltage is the regulated output voltage and the circuit is Zener regulator circuit.

- Zener current will becomes less $~I_{Zmin}$ at V_{Smin} and it will increase to I_{Zmax} at V_{Smax}


- Minimum Zener current I_{Zmin} should not less than 10% I_{Zmax} to maintain constant V_{Z}

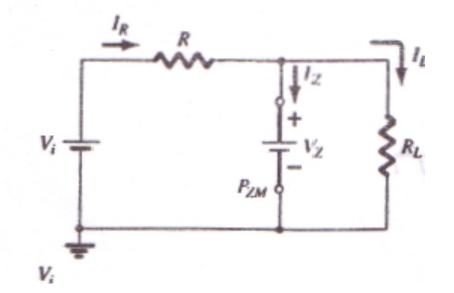
• Maximum Zener current I_{Zmax} should not more than P_Z/V_Z not to burn the Zener diode


Basic Zener Regulator

- If V<Vz
- The Zener diode is "off" else the Zener diode is "on"

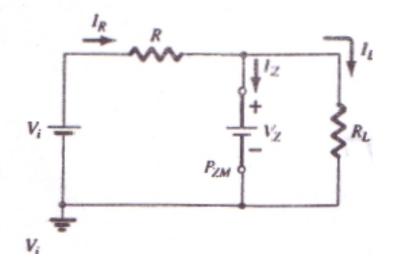
$$V = V_L = \frac{R_L V_i}{R + R_L}$$

- If V>Vz
- If the Zener is on
- Then VL = Vz (i.e the load voltage is held fixed 'LOCKED' to the zener voltage Vz)


• Iz=IR-IL

NOTE :

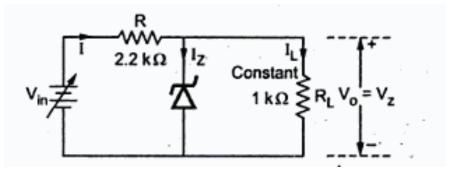
The maximum power dissipation for the zener diode is fixed and given by,


 $P_D = V_Z I_{Z max}$

Working of Zener Regulator under varying Vin

V _{in} increases	→	$I = I_L + I_Z$ increases	>	I_L is constant (V _Z /R _L)	≯	So I_Z increases ($I_Z = I - I_L$)	<i>→</i>	As long I _Z < I _{Zmax} , V _Z is constant i.e. output voltage is constant
V _{in} decreases	≯	I = I _L + I _Z decreases	≯	I _L is constant (V _Z /R _L)	→	So I_Z decreases ($I_Z = 1 - I_L$)	¢	As long I _Z >I _{Zmin} , V _Z is constant i.e. output voltage is constant

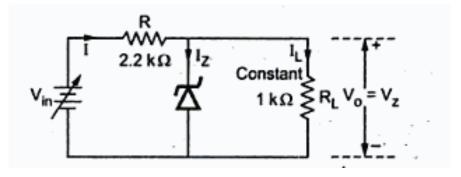
Working of Zener Regulator under varying Load (R_L)



R _L increases I _L decreases	· →· /	$I = \frac{V_{in} - V_Z}{R}$ constant	→	$I_Z = I - I_L$ increases	⇒	As long I _Z < I _{Zmax} , V _Z is constant i.e. output voltage is constant,
R _L decreases I _L increases	→	$I = \frac{V_{in} - V_{Z}}{R}$ constant	·→	$l_Z = I - I_L$ decreases	*	As long I _Z >I _{Zmin} , V _Z is constant i.e. output voltage is constant.

Problem 1

For a zener regulator shown in the Fig. calculate the range of input voltage for which output will remain constant.


 $V_Z = 6.1V, I_{Zmin} = 2.5 mA, I_{Zmax} = 25 mA, r_Z = 0 \Omega$

 $R_L = 1 \ k\Omega, \ V_Z = 6.1 \ V$

$$I_L = \frac{V_Z}{R_L} = \frac{6.1}{1 \times 10^3} = 6.1 \text{ mA constant}$$

Solution Example 1

For $V_{in(min)}$, $I_Z = I_{Zmin} = 2.5 \text{ mA}$

$$I = I_{Zmin} + I_L = 2.5 + 6.1 = 8.6 \text{ mA}$$

 $V_{in(min)} = V_Z + IR = 6.1 + 8.6 \times 10^{-3} \times 2.2 \times 10^3 = 25.02 V$

For $V_{in(max)}$, $I_Z = I_{Zmax} = 25 \text{ mA}$

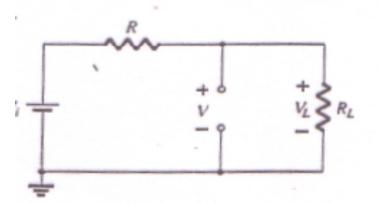

 $I = I_{Zmax} + I_L = 25 + 6.1 = 31.1 \text{ mA}$

$$\therefore$$
 V_{in(max)} = V_Z + IR = 6.1 + 31.1×10⁻³×2.2×10³ = 74.52 V

Thus the range of input voltage is 25.02 V to 74.52 V, for which output will be constant.

Example 2

 Determine the range of values of Vi that will maintain the Zener diode in the "on" state

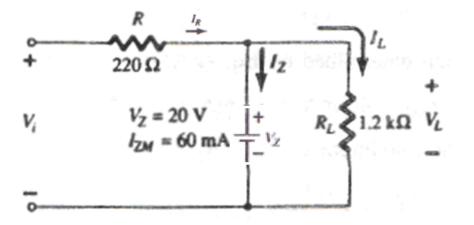


Solution - Example 2

If V < Vz Zener diode is in Off state

By Voltage Divider Theorem

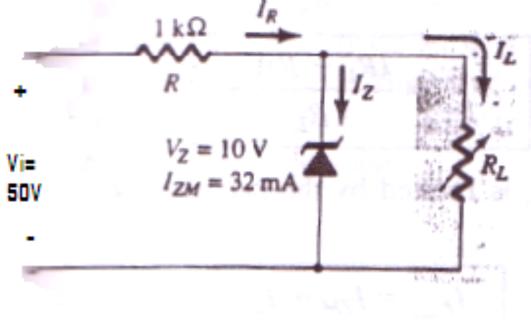
$$V_{z} = V_{L} = \frac{R_{L}V_{i}}{R + R_{L}}$$



$$V_{i\min} = \frac{(R_L + R)V_Z}{R_L} = 23.67V$$

Solution (Example 2)

Iz = 60mA

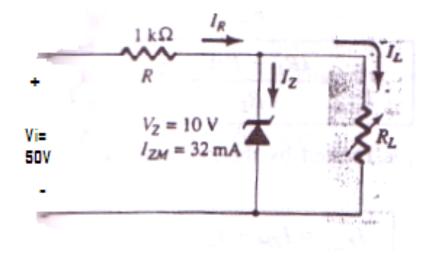

VL = 20V

$$I_{R \max} = I_{ZM} + I_L = 76.67 mA$$

 $V_{i \max} = I_{R \max} R + V_Z = 36.87V$

Example 3

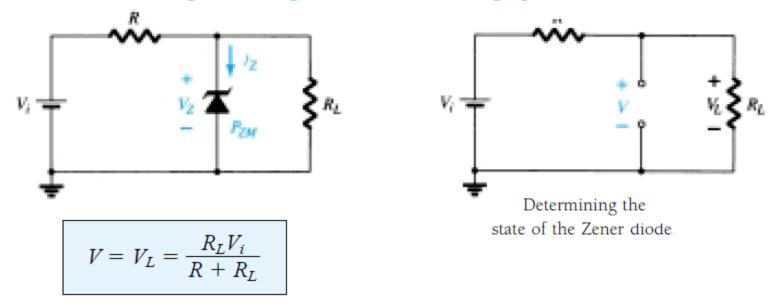
- (a) For the network shown, determine the range of R_L and I_L that will result in V_z being maintained at 50 V
- (b) Determine the maximum wattage rating of the diode



Solution (Example 3)

$$R_{L\min} = \frac{RV_Z}{V_i - V_Z} = 250\Omega$$

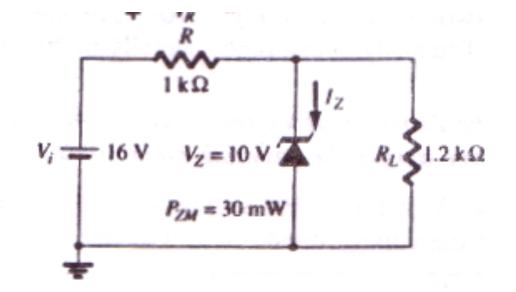
$$V_R = V_i - V_Z = 40V$$
$$I_R = \frac{V_R}{R} = 40mA$$


$$I_{L\min} = I_R - I_{ZM} = 8mA$$
$$R_{L\max} = \frac{V_Z}{I_{L\max}} = 1.25k\Omega$$

$$P_{\max} = V_Z I_{ZM} = 320 mW$$

Analysis for fixed applied DC voltage and load resistor.

1. Determine the state of the Zener diode by removing it from the network and calculating the voltage across the resulting open circuit.


2. Substitute the appropriate equivalent circuit and solve for the desired unknowns.

If $V \ge V_Z$, the Zener diode is "on"

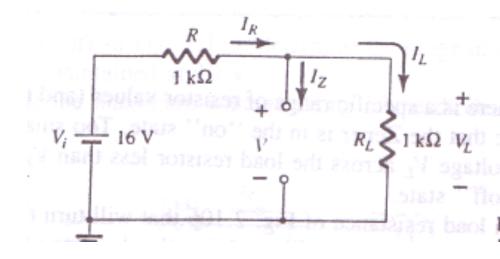
If $V < V_Z$, the diode is "off"

Example 4a

- (a) For the Zener diode network shown, determine VL, VR, Iz, and Pz.
- (b) Repeat part (a) with $R_L = 3 k\Omega$.

Solution (Example 4a)

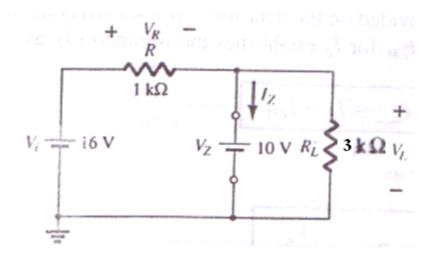
$$V = \frac{R_L V_i}{R + R_L} = 8.73 \qquad V$$


 Since V<Vz then the diode is off and the circuit becomes

$$V_{L} = V = 8.73 \qquad V$$

$$V_{R} = V_{i} - V_{L} = 7.27 \qquad V$$

$$I_{Z} = 0 \qquad A$$


$$P_{Z} = V_{Z}I_{Z} = 0 \qquad W$$

Solution (Example 4 b)

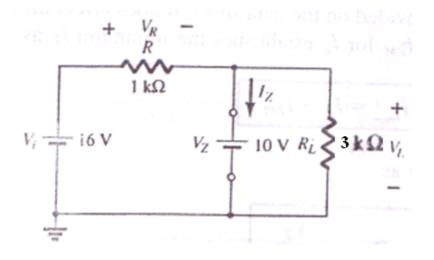
$$V = \frac{R_L V_i}{R + R_L} = \frac{3 \text{ k}\Omega(16 \text{ V})}{1 \text{ k}\Omega + 3 \text{ k}\Omega} = 12 \text{ V}$$

- Since V > Vz
- Now the diode is on and the circuit becomes

Solution (Example 4 b)

$$V_{L} = V_{Z} = 10 \text{ V}$$

$$V_{R} = V_{i} - V_{L} = 16 \text{ V} - 10 \text{ V} = 6 \text{ V}$$


$$I_{L} = \frac{V_{L}}{R_{L}} = \frac{10 \text{ V}}{3 \text{ k}\Omega} = 3.33 \text{ mA}$$

$$I_{R} = \frac{V_{R}}{R} = \frac{6 \text{ V}}{1 \text{ k}\Omega} = 6 \text{ mA}$$

$$I_{Z} = I_{R} - I_{L} [\text{Eq. (2.18)}]$$

$$= 6 \text{ mA} - 3.33 \text{ mA}$$

$$= 2.67 \text{ mA}$$

The power dissipated,

$$P_Z = V_Z I_Z = (10 \text{ V})(2.67 \text{ mA}) = 26.7 \text{ mW}$$

which is less than the specified $P_{ZM} = 30$ mW.