STRAWBERRY

[] /strawberrydevelopers
[] /strawberry_app

For more visit:

Strawberrydevelopers.weebly.com

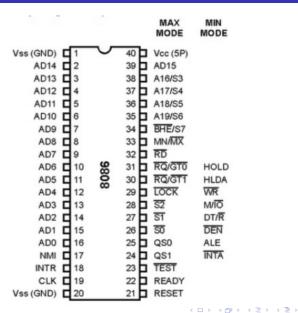
PIN DIAGRAM

Richa Upadhyay Prabhu

NMIMS's MPSTME

richa.upadhyay@nmims.edu

January 19, 2016

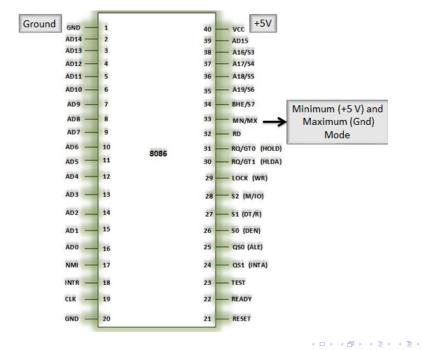

Richa Upadhyay Prabhu (MPSTME)

8080 Microprocessor

January 19, 2016 1 / 51

Image: Image:

Pin Diagram of 8086

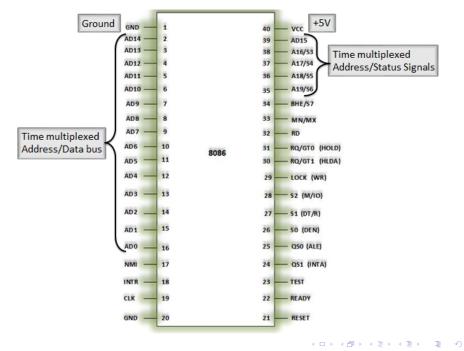


Richa Upadhyay Prabhu (MPSTME)

3

8086 can operate in two modes :

- Minimum Mode : unique processor system with a single 8086
- Maximum Mode : multiprocessor system with more than one 8086


э

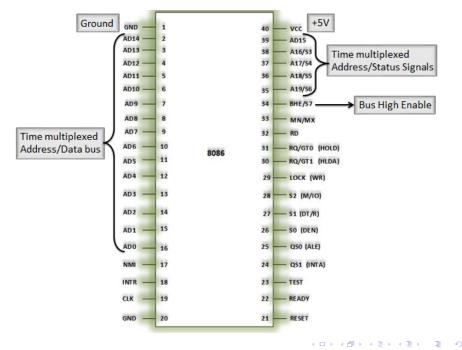
Minimum mode

- Pin 33 (MN/MX) connect to +5V
- Pin 24-31 are used as memory and I/O control signal
- The control signals are generated internally by the 8086/88

Maximum mode

- Pin 33 (MN/MX) connect to Ground
- Some control signals are generated externally by the 8288 bus controller chip
- Max mode is used when math processor is used.

January 19, 2016 6 / 51

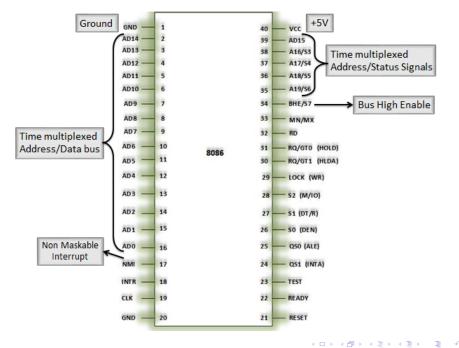

$AD_{15} - AD0$: Address Data Bus

- 16-bit multiplexed address and data bus
- During the 1st clock cycle $AD_0 AD_{15}$ are the low order 16-Bit address
- The 8086 has a total of 20 address line ,the upper 4 lines are multiplexed with the state signal that is A₁₆/S₃, A₁₇/S₄, A₁₈/S₅, A₁₉/S₆.
- During the first clock period the entire 20-bit address is available on these line
- In the next cycle, $AD_{15} AD_0$ contain the 16 bit data and S3,S4,S5,S6 become the status line

 S_3 and S_4 are decoded as follows

- 00 extra segment
- 01 stack segment
- 10 code or no segment
- 11 data segment

After the first clock cycle of an instruction execution, the A_{17}/S_4 and A_{16}/S_3 pins specify which segment register generates the segment portion of the 8086 address.

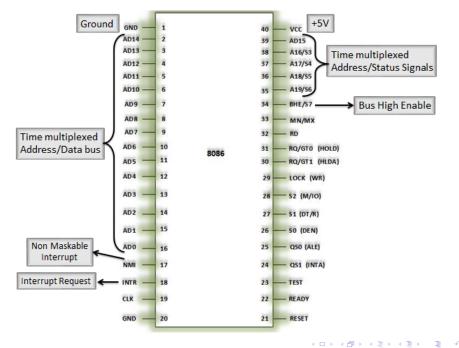


January 19, 2016 9 / 51

 BHE/S_7 : is used as bus high enable during the 1st clock cycle of an instruction execution

- Used to enable data on the most significant half of data bus
- or can say used to distinguish between the low byte and the high byte of the data for the 16-bit external data bus of 8086
- BHE is Low during T1 state of read, write and interrupt acknowledge cycles when a byte is to be transferred on the high portion of the bus.

BHE	AD0		
0	0	16-bit	D0-D15
0	1	8-bit	Upper half, D8-D15
1	0	8-bit	Lower half, D0-D7
1	1		Data Bus Idle

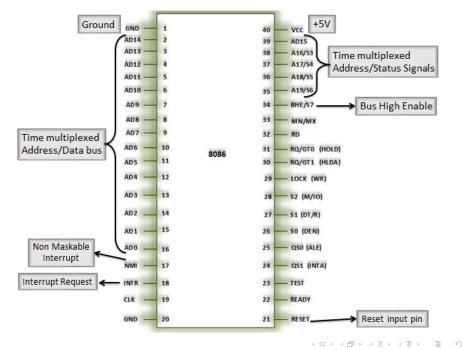


8080 Microprocessor

January 19, 2016 11 / 51

NMI : Non Maskable Interrupt; An edge triggered input, causes a type-2 interrupt.

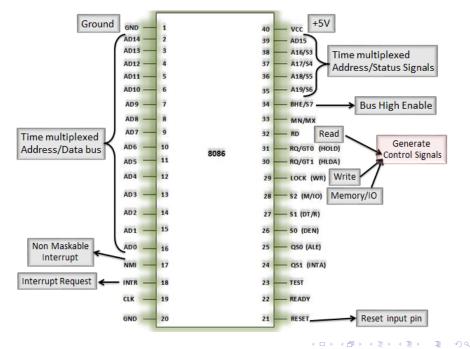
- A subroutine is vectored to via the interrupt vector look up table located in system memory.
- NMI is not maskable internally by software.
- A transition from a LOW to HIGH on this pin initiates the interrupt at the end of the current instruction.
- This input is internally synchronized.



8080 Microprocessor

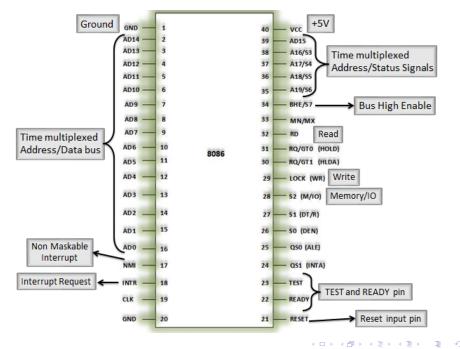
January 19, 2016 <u>13 / 51</u>

INTR (Interrupt Request)


- An active-high level-triggered input signal to the processor
- Sampled in the last clock cycle of each instruction
- In IBM PC, this is connected to the 8259 Interrupt controller

January 19, 2016 15 / 51

RESET : causes the processor to immediately terminate its present activity

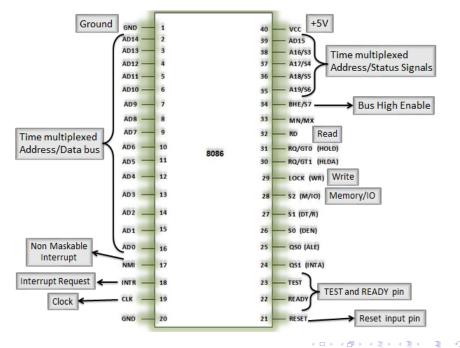

- Active high signal came from 8284
- Force the processor to stop any activities and to discard everything
- The signal must be active high for at least four clock cycles,
- Data after reset: CS: FFFFH, IP: 0000H, DS ES SS: 0000H Flags: Cleared, Queue: Empty

January 19, 2016 17 / 51

using RD, WR and IO/M pins

WR	IO/M	Signal
1	0	MEMR
0	0	MEMW
1	1	IOR
0	1	IOW
0	x	Never happens
	WR 1 0 1 0 0	WR IO/M 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 x

8080 Microprocessor

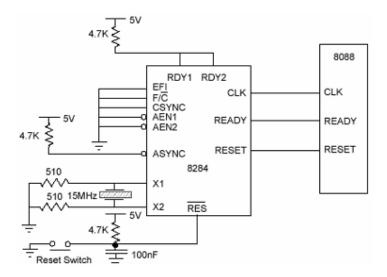

January 19, 2016 19 / 51

TEST

- TEST pin is examined by the "WAIT" instruction.
- If the TEST pin is Low, execution continues. Otherwise the processor waits in an "idle" state.
- This input is synchronized internally during each clock cycle on the leading edge of CLK.

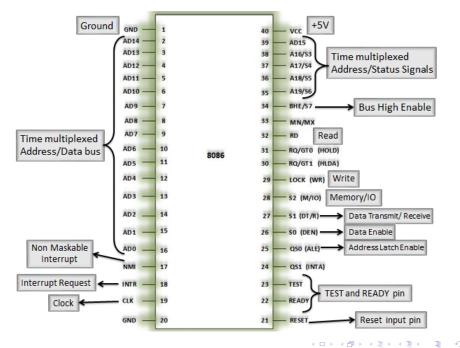
READY

- $\bullet\,$ is the acknowledgement from the addressed memory or I/O device that it has completed the data transfer.
- The READY signal from memory or I/O is synchronized by the 8284 clock generator to form READY.
- This signal is active HIGH.



8080 Microprocessor

January 19, 2016 21 / 51

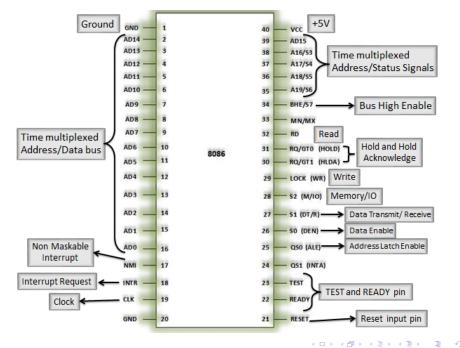

CLOCK (heart beat of CPU)

- Clock provides the basic timing for the processor and bus controller.
- It is asymmetric with 33 percent duty cycle to provide optimized internal timing
- Minimum frequency of 5 MHz is required
- 8284 clock generator chip must be connected to the 8086 clock pin, since it does not have on chip clock generator
- The crystal connected to 8284 must have a frequency 3 times the 8086 internal frequency

2

イロト イヨト イヨト イヨト

8080 Microprocessor

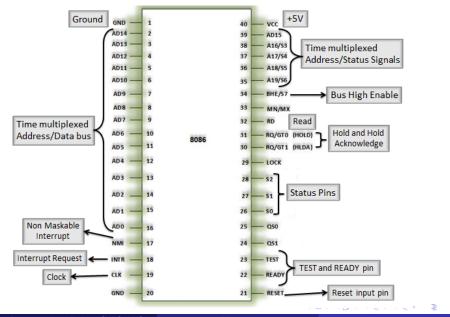

January 19, 2016 24 / 51

ALE : Address Latch Enable

ALE is provided by the processor to latch the address into the 8282/8283 address latch. It is an active high pulse during T1 of any bus cycle.

DT/ R: DATA Transmit/Receive In minimum mode, 8286/8287 transceiver is used for the data bus. DT/ R is used to control the direction of data flow through the transceiver.

 DEN : Data Enable It is provided as an output enable for the 8286/8287 in a minimum system which uses the transceiver


8080 Microprocessor

January 19, 2016 26 / 51

HOLD & HLDA (I/O): Hold and Hold Acknowledge

- Hold indicates that another master is requesting a local bus "HOLD"
- To be acknowledged, HOLD must be active HIGH.
- The processor receiving the "HOLD " request will issue HLDA (HIGH) as an acknowledgement in the middle of the T1-clock cycle.
- With the issue of HLDA, the processor will float the local bus and control lines

Pins Specific to Maximum mode only

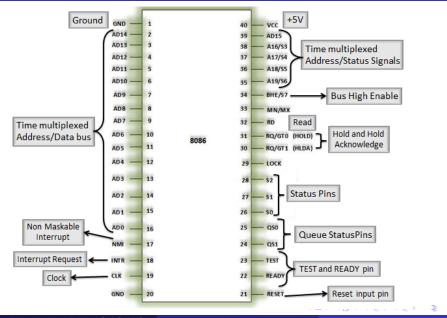
Richa Upadhyay Prabhu (MPSTME)

8080 Microprocessor

January 19, 2016 28 / 51

Pin Diagram of 8086

S2, S1, S0 : Status Pins


- These pins are active during T4, T1 and T2 states and is returned to passive state 1,1,1 during T3
- Are used by the 8288 bus controller to generate all memory and I/O operation access control signals

S2	S1	S0	Characteristics
0	0	0	Interrupt acknowledge
0	0	1	Read I/O port
0	1	0	Write I/O port
0	1	1	Halt
1	0	0	Code access1 0 1 Read memory
1	1	0	Write memory
1	1	1	Passive State

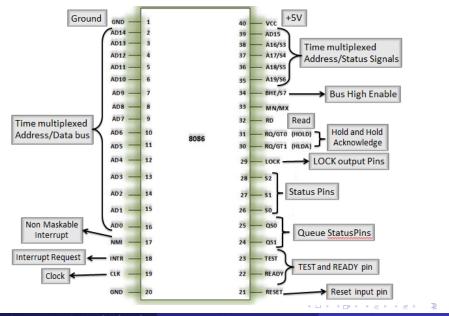
Richa Upadhyay Prabhu (MPSTME)

8080 Microprocessor

Pins Specific to Maximum mode only

Richa Upadhyay Prabhu (MPSTME)

8080 Microprocessor


January 19, 2016 30 / 51

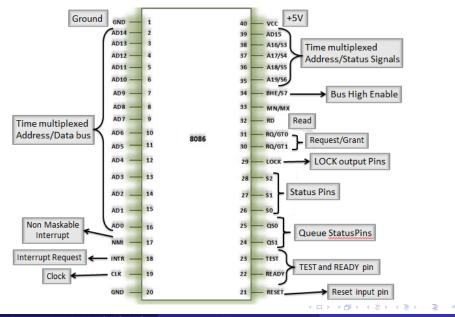
QS0, QS1: Queue Status

- Queue Status is valid during the clock cycle after which the queue operation is performed
- QS0, QS1 provide status to allow external tracking of the internal 8086 instruction queue

QS1	QS1	Characteristics
0	0	No operation
0	1	First byte of opcode from queue
1	0	Empty the queue
1	1	Subsequent byte from queue

Pins Specific to Maximum mode only

Richa Upadhyay Prabhu (MPSTME)


8080 Microprocessor

January 19, 2016 32 / 51

LOCK

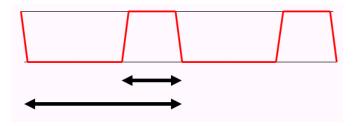
- It indicates to another system bus master, not to gain control of the system bus while LOCK is active Low
- The LOCK signal is activated by the "LOCK" prefix instruction and remains active until the completion of the instruction
- This signal is active Low and floats to tri-state OFF during 'hold acknowledge'

Pins Specific to Maximum mode only

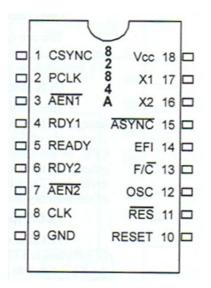
Richa Upadhyay Prabhu (MPSTME)

8080 Microprocessor

January 19, 2016 34 / 51


RQ/GT0 and RQ/GT1 (I/O): Request/Grant

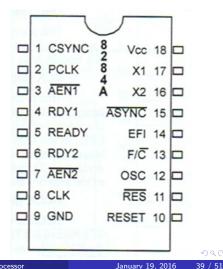
- Are used by other processors in a multi processor organization
- Local bus masters of other processors force the processor to release the local bus at the end of the processors current bus cycle
- Each pin is bi-directional and has an internal pull up resistors. Hence they may be left un-connected

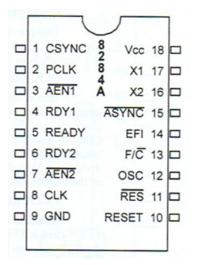

- Ancillary component to the 8086/8088 microprocessors
- The 8284 provides the following basic functions or signals:
 - Clock generation (CLK)
 - RESET synchronization
 - READY synchronization
 - TTL level peripheral clock (PCLK)

The 8088/8086 require a specific waveform for the system clock

- Fast rise and fall times (i10ns)
- Logic 0: -0.5 to 0.6 V
- Logic 1: 3.9 to 5.0 V
- Duty cycle of 33

33% duty cycle


3

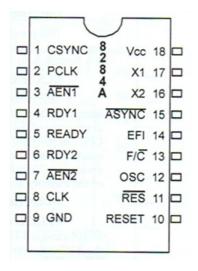

- ∢ ≣ →

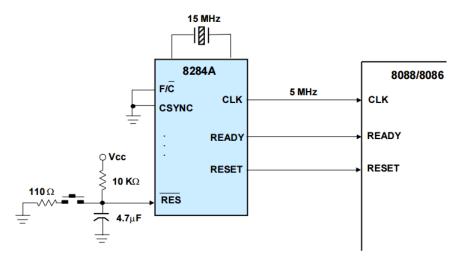
-

Input Pins

- RES (Reset) In): from power supplier
- X1 and X2 (Crystal In): the crystal frequency must be 3 times the desired frequency for the microprocessor
- RDY1 and AEN1: provide a Ready signal to processor, which will insert a WAIT state to the CPU read/write cycle
- RDY2 and AEN2: For multiprocessor systems

Output Pins


- RESET: reset signal to the 8086/88, activated by RES
- OSC (oscillator): provide to the expansion slot
- CLK (clock): 1/3 of the crystal input, with a duty cycle of 33%
- PCLK: one-half of CLK (1/6 of crystal) with duty cycle of 50% and is TTL compatible.
- READY:


connect to READY input of CPU to insert WAIT state

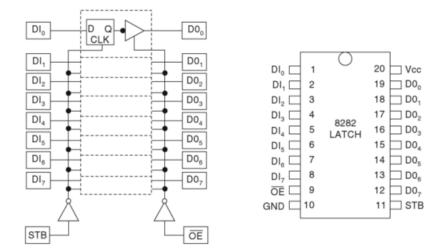
Output Pins

- F/C (Frequency/crystal select): If 1, an external clock is provided to the EFI input pin and if 0, an external crystal oscillator connected to X1 and X2 provides the clock
- EFI (External frequency Input): Supplies the timing whenever the F/C is high.
- CSYNC

(Clock Synchronization): Used whenever the EFI input provides synchronization in systems with multiple processors. If the internal crystal oscillator is used,

- < ∃ →

• • • • • • • •


8282/8283 LATCH

3 🕨 🖌 3

- CMOS octal latching buffer
- provides an eight bit parallel latch/buffer in a 20 pin package
- Basically de-multiplexing the data and addressing bus
- OE (Output Enable) connected to GND, the chip is selected
- STB (Strobe) is connected to the pin ALE (Address Latch Enable) of the processor and takes over the address data from the multiplexed address-/databus

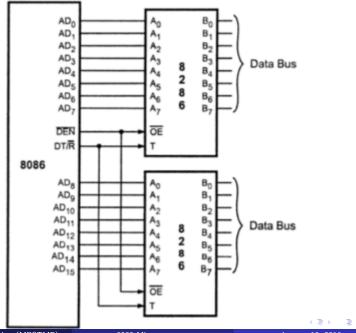
Latches are used to de-multiplex the address/data and address/status lines and commonly have output buffers for driving external loads.

Figure: Functional Diagram and Pin Diagram

Richa Upadhyay Prabhu (MPSTME)

Image: A mathematical states and a mathem

э

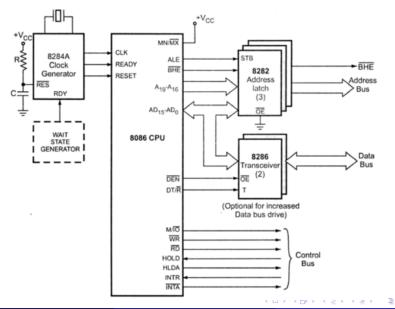

8286 TRANSCEIVER

-

Image: A matrix of the second seco

-

- If a system includes several interfaces then to increase current sourcing/sinking capacities it is necessary to use drivers and receivers for data bus also
- Intel 8286 device is used to implement the transceiver block


Richa Upadhyay Prabhu (MPSTME)

January 19, 2016 48 / 51

- If a system includes several interfaces then to increase current sourcing/sinking capacities it is necessary to use drivers and receivers for data bus also
- Intel 8286 device is used to implement the transceiver block
- It has 16- tri state elements, 8 receivers and 8 drivers
- That's why TWO 8286 are required to service 16 data lines of 8086
- $\bullet\,$ DT/R is connected to T input, which controls the direction of data flow

- DT/\overline{R} is connected to T input, which controls the direction of data flow
 - $\bullet\,$ When this signal is low, receivers are enabled, so that 8086 can read data from memory and I/O device
 - When this signal goes high, drivers are enabled allowing 8086 to transfer(or write) data into memory and I/O device
- To enable output of transceiver its \overline{OE} pin should be low, That's why it is connected to DEN pin of 8086.
 - Since \overline{DEN} signal goes low when CPU is ready to send or receive data

Basic Minimum mode configuration

Richa Upadhyay Prabhu (MPSTME)

8080 Microprocessor

January 19, 2016 51 / 51

STRAWBERRY

[] /strawberrydevelopers
[] /strawberry_app

For more visit:

Strawberrydevelopers.weebly.com