

Department	of	Computer	Science	

Developed by Strawberry

Definition	
	
�An	operator	is	a	symbol	(+,-,*,/)	that	directs	the	computer	to	
perform	certain	mathematical	or	logical	manipulations	and	is	
usually	used	to	manipulate	data	and	variables�	
Ex:	a+b	

Developed by Strawberry

Operators	in	C	
1.  Arithmetic	operators	
2.  Relational	operators	
3.  Logical	operators	
4.  Assignment	operators	
5.  Increment	and	decrement	operators	
6.  Conditional	operators	
7.  Bitwise	operators	
8.  Special	operators	

Developed by Strawberry

Arithme(c	operators	

Operator example Meaning
+ a + b Addition –unary
- a – b Subtraction- unary
* a * b Multiplication
/ a / b Division

% a % b Modulo division- remainder

Developed by Strawberry

Arithme(c	operators	
//Program to convert a given number of days into months and days
#include <stdio.h>
#include<conioh>
void main()
{

 int months, days;
 printf(�\n Enter days:�);
 scanf(�%d�,&days);
 months=days/30;
 days=days%30;
 printf(�\n Months = %d Days = %d�,months,days);
 getch();

}
Developed by Strawberry

Rela(onal	Operators	

Operator Meaning
< Is less than

<= Is less than or equal to
> Is greater than

>= Is greater than or equal to
== Equal to
!= Not equal to

Developed by Strawberry

Rela(onal	Operators	

•  Used to compare two quantities.

•  For example: to compare the age of two persons, or the
price of two items so on..

•  The value of relational expression is either true (1) or false
(0).

•  10 < 20 is true

• 20<10 is false

Developed by Strawberry

Logical Operators

Operator Meaning
&& Logical AND
|| Logical OR
! Logical NOT

Logical expression or a compound relational
expression-

An expression that combines two or more
relational expressions

Ex: if (a==b && b==c)

 Developed by Strawberry

Truth	Table	

a b
Value of the expression

a && b a || b
0 0 0 0

0 1 0 1

1 0 0 1
1 1 1 1

Developed by Strawberry

#include<stdio.h>
void main()
{
int num1 = 30;
int num2 = 40;

if(num1>=40 || num2>=40)

printf("Or If Block Gets Executed");

if(num1>=20 && num2>=20)

printf("And If Block Gets Executed");

if(!(num1>=40))

printf("Not If Block Gets Executed"); } Developed by Strawberry

Assignment	operators	
Syntax:	
	v	op	=	exp;	

Where	v	=	variable,		
									op	=	shorthand	assignment	operator	
	 				exp	=	expression	

Ex:	x=x+3		
				x+=3	

Developed by Strawberry

Shorthand	Assignment	operators	

Simple assignment
operator Shorthand operator

a = a+1 a + =1
a = a-1 a - =1

a = a* (m+n) a * = m+n
a = a / (m+n) a / = m+n

a = a %b a %=b

Developed by Strawberry

Program	to	print	a	sequence	of	squares	of	
numbers	
#include<stdio.h>
#define N 100
#define A 2
void main()
{

 int a;
 a=A;
 while(a<N)
 {
 a*=a;
 printf(�%d\n�,a);
 }

} Developed by Strawberry

Increment	&	Decrement	Operators	
C	supports	2	useful	operators	namely	
1.  Increment	++	
2.  Decrement	–	operators	
The	++	operator	adds	a	value	1	to	the	operand	
The	–	operator	subtracts	1	from	the	operand	
++a	or	a++	
--a	or	a--		

Developed by Strawberry

Rules	for	++	&	--	operators	
1.  These	require	variables	as	their	operands	
2.  When	postfix	either	++	or	–	is	used	with	the	

variable	in	a	given	expression,	the	expression	is	
evaluated	first	and	then	it	is	incremented	or	
decremented	by	one	

3.  When	prefix	either	++	or	–	is	used	with	the	
variable	in	a	given	expression,	it	is	incremented	
or	decremented	by	one	first	and	then		the	
expression	is	evaluated	with	the	new	value	

Developed by Strawberry

Examples	for	++	&	--	operators	
Let	the	value	of	a	=5	and	b=++a	then	
a	=	b	=6	
Let	the	value	of	a	=	5	and	b=a++	then	
b=5	but	a=6	
i.e.:		
1.	a	prefix	operator	first	adds	1	to	the	operand	and	
then	the	result	is	assigned	to	the	variable	on	the	
left	

2.	a	postfix	operator	first	assigns	the	value	to	the	
variable	on	left	and	then	increments	the	operand.	

Developed by Strawberry

Condi(onal	operators	
Syntax:	
exp1	?	exp2	:	exp3	
Where	exp1,exp2	and	exp3	are	expressions	
Working	of	the	?	Operator:	
Exp1	is	evaluated	first,	if	it	is	nonzero(1/true)	then	the	expression2	is	

evaluated	and	this	becomes	the	value	of	the	expression,	
If	exp1	is	false(0/zero)	exp3	is	evaluated	and	its	value	becomes		the	value	

of	the	expression	
Ex:	m=2;	 	 	 	if(m>n)	then	r=m	else	r=n	
			n=3																									
			r=(m>n)	?	m	:	n;																		

Developed by Strawberry

Bitwise	operators	
	These operators allow manipulation of data at the bit level

Operator Meaning
& Bitwise AND
| Bitwise OR
^ Bitwise exclusive OR

<< Shift left
>> Shift right

Developed by Strawberry

Special	operators	
1.  Comma	operator	(,)	
2.  sizeof	operator	–	sizeof()	
3.  Pointer	operators	–	(&	and	*)	
4.  Member	selection	operators	–	(.	and	->)	

Developed by Strawberry

Sizeof	Operator	

� The	 sizeof	 operator	 is	 a	 compile	 time	 operator	 and	
when	used	with	an	operand,	it	returns	the	number	of	
bytes	 the	 operand	 occupies.	 The	 operand	 may	 be	 a	
variable,	a	constant	or	a	data	type	qualifier.	

� M=sizeof(num);	
� N=sizeof(sum);	
	

Developed by Strawberry

Sample	Program	
main(){	
	int	a,b,c,d;	
	a=15;	b=10;	
	c=++a-b;	
	printf(�a=%d	b=%d	c=%d\n�,a,b,c);	
	d=b++	+a;	
	printf(�a=%d	b=%d		d=%d\n�,a,b,d);	
	printf(�a/b	=	%d�,	a/b);	
	printf(�a%b	=	%d�,a%b);	
	printf(�%d\n�,	(c>d)	?	1:0);	

Printf(�%d\n�,(c<d)?1:0);	
}	
	

Developed by Strawberry

Arithme;c	Expressions	
	 Algebraic expression C expression

axb-c a*b-c

(m+n)(x+y) (m+n)*(x+y)
a*b/c

3x2+2x+1 3*x*x+2*x+1
a/b

S=(a+b+c)/2

c
ab

b
a

2
cba ++S=

Developed by Strawberry

Arithme;c	Expressions	
	Algebraic expression C expression

area= area=sqrt(s*(s-a)*(s-b)*(s-c))

 sin(b/sqrt(a*a+b*b))

tow1=sqrt((rowx-rowy)/2+tow*x*y*y)

tow1=sqrt(pow((rowx-rowy)/2,2)+tow*x*y*y)

y=(alpha+beta)/sin(theta*3.1416/180)+abs(x)

))()((csbsass −−−

Sin
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+ 22 ba
b

2
1 2

xyyx τ
σσ

τ +
⎭
⎬
⎫

⎩
⎨
⎧ −

=

2
2

1 2
xyyx τ

σσ
τ +

⎭
⎬
⎫

⎩
⎨
⎧ −

=

xy +
+

=
θ
βα

sin

Developed by Strawberry

Precedence	of	operators	
BODMAS	RULE-	
�  Brackets	of	Division	Multiplication	Addition	Subtraction	

�  Brackets	will	have	the	highest	precedence	and	have	to	be		
	 evaluated	 first,	 then	 comes	 	 division,	multiplication,	 addition	
and	finally	subtraction.	

�  C	language	uses	some	rules	in	evaluating	the	expressions		
	and	they	r	called	as	precedence	rules,	with	some	operators		
	with	highest	precedence	and	some	with	least.	

�  The	2	distinct	priority	levels	of	arithmetic	operators	in	c	are-	

�  Highest	priority	:	*	/	%						Lowest	priority	:	+	-	
	 Developed by Strawberry

Rules	for	evalua;on	of	expression	
1.  First	parenthesized	sub	expression	from	left	to	right	are	evaluated.	
2.  If	parentheses	are	nested,	the	evaluation	begins	with	the	innermost	

sub	expression	
3.  The	precedence	rule	is	applied	in	determining	the	order	of	

application	of	operators	in	evaluating	sub	expressions	
4.  The	associatively	rule	is	applied	when	2	or	more	operators	of	the	

same	precedence	level	appear	in	a	sub	expression.	
5.  Arithmetic	expressions	are	evaluated	from	left	to	right	using	the	

rules	of	precedence	
6.  When	parentheses	are	used,	the	expressions	within	parentheses	

assume	highest	priority	

Developed by Strawberry

Precedence	of	Arithme;c	Operators	
High	Priority	*	/	%	
Low	priority	+	-	
X=	a-b/3+c*2-1			where	a=9,b=12	and	c=3	
	
X=9-12/3+3*2-1	
Step	1:	9-4+3*2-1																																						X=	9-12/(3+3)*(2-1)	
Step	2:	9-4+6-1																																									X=9-12/6*(2-1)	
Step	3:	5+6-1																																													X=9-12/6*1	
Step	4:	11-1																																																	X=9-2*1	
Step	5:	10																																																		X=9-2	
	 	 	 	 	 							X=7	

	
	
	
	
	

Developed by Strawberry

Precedence	of	Arithme;c	Operators	
X=	9-(12/(3+3)*2)-1	
X=9-(12/6*2)-1	
X=9-(2*2)-1	
X=9-4-1	
X=5-1	
X=4	
	
	
	

Developed by Strawberry

Example	1	

Evaluate	x1=(-b+	sqrt	(b*b-4*a*c))/(2*a)	@	a=1,	b=-5,	c=6	
=(-(-5)+sqrt((-5)(-5)-4*1*6))/(2*1)	
=(5	+	sqrt((-5)(-5)-4*1*6))/(2*1)	
=(5	+	sqrt(25	-4*1*6))/(2*1)	
=(5	+	sqrt(25	-4*6))/(2*1)	
=(5	+	sqrt(25	-24))/(2*1)	
=(5	+	sqrt(1))/(2*1)	
=(5	+	1.0)/(2*1)	
=(6.0)/(2*1)	
=6.0/2	=	3.0	
	
	
	
	
	

Developed by Strawberry

Example	2	
Evaluate	the	expression	when	a=4	

b=a-	++a	
=a	–	5	
=5-5	
=0	

Developed by Strawberry

Type	Conversion	in	Expressions	
�  Implicit	Type	Conversion	
� Explicit	Type	Conversion	
	
1.  Implicit	type	conversion:	
	 	 	 	 	 	 	C	permits	mixing	of	 constants	 and	variables	of	
different	 types	 in	 an	 expression.	 C	 automatically	
converts	any	intermediate	values	to	the	proper	type	so	
that	 the	expression	can	be	evaluated	without	 loosing	
any	 significance.	 This	 automatic	 type	 conversion	 is	
known	as	implicit	type	conversion.	

Developed by Strawberry

Implicit	Type	Conversion		
If	the	operands	are	of	different	types,	the	�lower�	type	
is	automatically	converted	to	higher	type	before	the	
operation	precedes.	
	
1. float	to	int	causes	truncation	of	the	fractional	part.	
2. double	to	float	causes	rounding	of	digits.	
3. long	int	to	int	causes	dropping	of	the	excess	higher	
order	bits.	
	

Developed by Strawberry

Implicit	Type	Conversion		
int		i,	x;		float		f;		double		d;			long	int		y;	
x								=							y/i												+													i*f														-								d	
	
	

long

long

float

float

float float int
double

double

Developed by Strawberry

Implicit	Type	Conversion		

Short Char

int

Unsigned int

Long int

Unsigned long int

Float

Double

Long Double Conversion Hierarchy

Developed by Strawberry

Explicit	Type	Conversion		
We	have	just	discussed	how	c	performs	type	conversion	
automatically.	However,	there	are	instances	when	we	
want	to	force	a	type	conversion	in	a	way	that	is	different	
from	automatic	type	conversion.	
Ratio=	female_number/male_number;	
Ratio=(float)	female_number/male_number;	
X=(int)7.5;			//	7.5	is	converted	to	integer	by	truncation	
A=(int)21.3/(int)4.5;			//	Evaluated	as	21/4	and	the	result=5	
Y	=	(int)(a+b);	//The	result	of	a+b	is	converted	to	integer	
Z	=	(int)a+b;	//	a	is	converted	to	integer	and	then	added	to	b.	

Developed by Strawberry

Operator	 Description	 Associativity	
()	
[]	
.	
->	

++	--	

Parentheses	(function	call)		
Brackets	(array	subscript)	
Member	selection	via	object	name	
Member	selection	via	pointer	
Postfix	increment/decrement		

left-to-right	

++	--	
+	-	
!	~	

(type)	
*	
&	

sizeof		

Prefix	increment/decrement	
Unary	plus/minus	
Logical	negation/bitwise	complement	
Cast	(convert	value	to	temporary	value	of	type)	
Dereference	
Address	(of	operand)	
Determine	size	in	bytes	on	this	implementation	

right-to-left	

*		/		%	 Multiplication/division/modulus	 left-to-right	
+		-	 Addition/subtraction	 left-to-right	

<<		>>	 Bitwise	shift	left,	Bitwise	shift	right	 left-to-right	
<		<=	
>		>=	

Relational	less	than/less	than	or	equal	to	
Relational	greater	than/greater	than	or	equal	to	

left-to-right	

==		!=	 Relational	is	equal	to/is	not	equal	to	 left-to-right	
&	 Bitwise	AND	 left-to-right	
^	 Bitwise	exclusive	OR	 left-to-right	
|	 Bitwise	inclusive	OR	 left-to-right	

&&	 Logical	AND	 left-to-right	
|	|	 Logical	OR	 left-to-right	
?	:	 Ternary	conditional	 right-to-left	
=	

+=		-=	
*=		/=	
%=		&=	
^=		|=	

<<=		>>=	

Assignment	
Addition/subtraction	assignment	
Multiplication/division	assignment	
Modulus/bitwise	AND	assignment	
Bitwise	exclusive/inclusive	OR	assignment	
Bitwise	shift	left/right	assignment	

right-to-left	

,	 Comma	(separate	expressions)	 left-to-right	

Developed by Strawberry

Operator	Precedence	and	Associa;vity	
�  If(x==10+15	&&	y<10)	
				if(x=25		&&	y<10)	
				x==25	is	false	(0)	
				y<10	is	true(1)	
				if(false		&&	True)	-	false	
	

Developed by Strawberry

Programs	
� Write	a	program	to	read	three	values	using	scanf	
statement	and	print	the	following	results:		

				1.	Sum	of	values	
				2.	Average	of	three	values	
				3.	Largest	of	three	values	
				4.	Smallest	of	three	values	
�  	Write	a	program	to	compute	and	display	sum	of	all	
integers	that	are	divisible	by	6	and	not	by	4	and	lie	
between	0	and	100.	The	program	should	also	count	and	
display	the	number	of	such	values.	

� Write	a	program	using	do	while	loop	to	calculate	and	print	
the	fibbonanci	series.	

1	1	2	3	5	8	13…	
Developed by Strawberry

Developed by Strawberry

