STRAWBERRY

A/strawberrydevelopers
B/strawberry_app
For more visit:
Strawberrydevelopers.weebly.com

8087 Math Processor

Richa Upadhyay Prabhu

NMIMS's MPSTME
richa.upadhyay@nmims.edu
February 9, 2016

Introduction

Need of Math Processor:

- In application where fast calculation is required
- Also where there is a need to do arithmetic operations on very small and very larger numbers
- 8086 is not designed to do complex mathematical operations
- Highly optimized number crunching programs run slow on general purpose processors
To solve this, special processors with architectures and instruction set optimized for performing complex lengthy calculations.

8087 Introduction

- 8087 is referred as Co-processor, as it is used in parallel with the main processor
- Main processor handles general program execution
- 8087 handles specialized math computations
- 8087 can perform computations 10 times faster than 8086

8087 Introduction

- 8087 is a processor with its own instruction set
- These instructions are written in program as need interspersed with 8086 instructions
- Each processor decodes all the instructions in the fetched instruction byte stream but executes only its own instruction
- Like 8086,8087 also has an instruction queue
- While decoding if 8087 finds an 8086 instruction then it simply treats it as NOP.

DATA TYPES

There are three general type of data types:

- Binary Integer
- Packed decimal
- Real

Binary Integer Data Type

- Basic format that is used to represent signed binary numbers
- MSB is sign bit; '0' for positive and '1' for negative
- Rest of the bits represent the magnitude of the number
- If number is negative, the magnitude is represented in 2 's complement form

Binary Integer Data Type

Below figures show binary integer format in different lengths for various ranges of numbers
(a) Word integer (16 Bit Signed Integer)

S	Magnitude
15	0

Sign bit is 0 for positive and 1 for negative.
Range: $-32768<=\mathrm{X}<=+32767$. Negative number representation in 2 's complement form.

Binary Integer Data Type

Below figures show binary integer format in different lengths for various ranges of numbers
(b) Short integer (32 Bit Signed Integer)

S	Magnitude
31	0

$$
\text { Range: } \quad-2 \times 10^{9}<=X<=2 \times 10^{9}
$$

Binary Integer Data Type

Below figures show binary integer format in different lengths for various ranges of numbers
(c) Long Integer (64 Bit Signed Integer)

S	Magnitude
63	0

Range: $\quad-9 \times 10^{18}<=X<=9 \times 10^{18}$

Packed Decimal Numbers

- A number is represented as a string of 18 BCD digits
- Each byte of storage can contain two decimal numbers
- MSB bit is sign bit
- format is handy for working with financial programs, e.g. to represent amount as large as $\$ 9,999,999,999,999,999.99$
- 8 don't care bits are also there

S	Don't care	Magnitude	
79	72	71	0

$-99 \ldots . . .99<=\mathrm{X}<=+99 \ldots$....99(18 digits)

Real Numbers

- Real Numbers or Floating point Numbers, which have both a real and a decimal part
- Basic principle is to use one group of bits to represent the digits and another to represent position of binary point w.r.t. these digits
- Number should be written in scientific notation or it should be normalized
- Process of moving decimal point just to the right of most significant non zero digit is called normalization

For example: $0.00857=8.57 \times 10^{-3}$

Real Numbers

For example: $0.00857=8.57 \times 10^{-3}$

- In the example we have the digit part i.e. significand or mantissa
- And also the exponent part
- Also sign of the exponent, which indicates whether the magnitude is >1 or <1

Real Numbers

SHORT REAL

Real Numbers

LONG REAL

S	BIASED EXPONENT	SIGNIFICAND
63	52	

$2.3 \times 10^{-308} \leqslant|x| \leqslant 1.7 \times 10^{308}$

Real Numbers

TEMPORARY REAL

s	BIASED EXPONENT	
79	64	
$3.4 \times 10^{-4932} \leqslant\|x\| \leqslant 1.1 \times 10^{4932}$		

8087 INTERNAL ARCHITECTURE

8087 INTERNAL ARCHITECTURE

The 8087 is divided into 2 sections:

- Control Unit
- Numeric Execution Unit

The numeric execution unit executes all numeric processor instructions while control unit receives, decodes instructions, read and writes memory operands and executes 8087 control instructions.

These 2 units works asynchronously with each other.

The control unit is majorly responsible for establishing communication between CPU and memory and also for coordinating internal co- processor execution.

8087 INTERNAL ARCHITECTURE

CONTROL UNIT

- Used to synchronize the operations between main processor and co-processor
- It receives the instruction opcode, decodes it and reads or write operands from memory
- It continuously monitors data bus to find instruction for 8087
- Operand Queue: 8087 maintains a parallel queue similar to the processor, whose length can be adjusted depending on the processor
- For 8086 ; the queue is of 6 bytes and for 8088 it is of 4 bytes

8087 INTERNAL ARCHITECTURE

CONTROL UNIT

- Queue status input pins $Q S_{0}$ and $Q S_{1}$ are used by 8087 to identify instructions fetched by the microprocessor
- 8087 instruction opcodes have 11011 as the most significant bits of first code byte
- Control unit consists of Control word, Status word and Data buffer (will be discussed later)

8087 INTERNAL ARCHITECTURE

8087 INTERNAL ARCHITECTURE

NUMERIC EXECUTION UNIT

- Blocks in this unit duplicate the functions performed by control and ALU blocks in microprocessor
- It performs all operations that access and manipulate numeric data in 8087 registers
- Numeric registers are 80 bit wide and the data is routed by 64 bit mantissa/significand bus and and a 16 bit sign/exponent bus
- While executing an instruction the NEU pulls up the BUSY signal, which is connected to $\overline{T E S T}$ input of 8086
- CPU is able to distinguish that the execution is not yet completed

8087 INTERNAL ARCHITECTURE

MICROCODE CONTROL UNIT : generates control signals which are required for execution of instruction

PROGRAMMABLE SHIFTER : used for shifting operands during execution of instruction

DATA BUS INTERFACE: connects internal data bus of 8087 to main processor data bus

8087 INTERNAL ARCHITECTURE

REGISTER STACK

- 8087 internally works with numbers in 80 bit temporary real format
- To hold these numbers it has a register stack of 80 bits registers, labeled (0)-(7)
- Last in first out stack (same as 8086)
- 8087 has a 3 bit stack pointer, which holds the number of register that is the top of stack

8087 INTERNAL ARCHITECTURE

8087 INTERNAL ARCHITECTURE

CONTROL AND STATUS WORD

- Control word is sent to 8087 from 8086 , by writing them to a memory location
- 8087 has to execute an instruction which reads the control word from memory
- Status word is sent to 8086 from 8087
- 8087 has to execute an instruction that will write the status word to memory

8087 INTERNAL ARCHITECTURE

CONTROL WORD

8087 INTERNAL ARCHITECTURE

STATUS WORD

8087 Exceptions

- Invalid operation: This includes the attempt to calculate the square root of a negative number or say to take out an operand from an empty register
- Overflow: Exponent of the result is too large for the destination real format.
- Zero divide: Arises when divisor is zero while the dividend is a non-infinite, non-zero number.
- Denormalized operation: It arises when an attempt is made to operate on an operand that is yet to be normalized.
- Under flow: Exponent of the result is too small to be represented.
- Precision: In case the operand is not made to represent in the destination format, causing 8087 to round the result. Also known as In-exact result.

8087 operation inn case of an exceptions

- 8087 sets the appropriate flag bit in the status word in case of occurrence of any one of the exception conditions.
- The exception mask in the control register is then checked and if the mask bit is set i.e., masked, then a built-in fix-up procedure is followed.
- If the exception is unmasked (i.e., mask bit $=0$), then user-written exception handlers take care of such situations.
- This is done by using the INT pin which is normally connected to one of the interrupt input pins of 8259A PIC.

8087 and 8086 interfacing

STRAWBERRY

A/strawberrydevelopers
B/strawberry_app
For more visit:
Strawberrydevelopers.weebly.com

