STRAWBERRY

f /strawberrydevelopers [3 /strawberry_app For more visit:
Strawberrydevelopers.weebly.com

KINEMATICS OF PARTICLES

1. The angular acceleration of a flywheel of diameter 0.6 m , rotating about its centroidal axis is given by $\alpha=\theta / 4 \mathrm{rad} / \mathrm{s}^{2}$ where θ is in radians. Determine the magnitude of the velocity and magnitude of resultant acceleration of a point on the rim of the flywheel at $\theta=2$ radians.
Ans. : assuming at $\theta=0, \omega=0, v=0.3 \mathrm{~m} / \mathrm{s}, a=0.335 \mathrm{~m} / \mathrm{s}^{2}$
2. A particle moves in the $x-y$ plane with acceleration components $a_{X}=-3 \mathrm{~m} / \mathrm{s}^{2}$ and $a_{Y}=-16 \mathrm{~m} / \mathrm{s}^{2}$. If its initial velocity is $v_{0}=50 \mathrm{~m} / \mathrm{s}$ directed at 30° to the axis compute the radius of curvature of the path at $\mathbf{t}=2$ seconds.
Hint: $1 / \varsigma=\left(V_{x} a_{y}-V_{y} a_{x}\right) /\left(\left(V_{x}{ }^{2}+V_{y}{ }^{2}\right)^{3 / 2}\right)$
Ans. : 88.47 m
3. A train starts from rest on a curved path of radius 800 m . Its speed increases uniformly and after 3 minutes it is $72 \mathrm{~km} / \mathrm{hr}$. Find the tangential, normal and total accelerations after 2 minutes.
4. A car starts from rest at $t=0$ along a circular track of radius 200 m . The rate of increase in speed of the car is uniform. At the end of 60 sec . The speed of the car is $24 \mathrm{~km} / \mathrm{hr}$. Find the normal and tangential components of acceleration at time $t=30 \mathrm{sec}$.
Ans. : $a_{t}=1 / 9 \mathrm{~m} / \mathrm{s}^{2}, a_{n}=1 / 18 \mathrm{~m} / \mathrm{s}^{2}$
5. A particle moves along a circle of radius 20 cm so that $S=20 \pi t^{2} \mathrm{~cm}$. Find its tangential and normal accelerations after it has completed a revolution.
Ans. : $a_{t}=40 \pi \mathrm{~cm} / \mathrm{sec}^{2}, a_{n}=160 \pi^{2} \mathrm{~cm} / \mathrm{sec}^{2}$
6. A particle moves according to the equation $r(t)=50 \cos 4 t^{2} i+50 \sin 4 t^{2} j$ where distance are in cm and the time in sec. Find its velocity, tangential and normal accelerations.
Ans. : v=400 cm $/ \mathrm{s}^{2}, \mathrm{a}_{\mathrm{t}}=400, \mathrm{a}_{\mathrm{n}}=3200 \mathrm{t}^{2} \mathrm{~cm} / \mathrm{sec}^{2}$
7. The motion of a particles is defined by a relation- $r(t)=30 \sin \left(2 t^{2}\right) \cdot i+30 \cos \left(2 t^{2}\right) \cdot j$ Find the velocity, tangential and normal components of accelerations at time $t=3 \mathrm{sec}$.
8. A car travels along a depression in a road, the equation of the depression being $x^{2}=200 y$. The speed of the car is constant and equal to $72 \mathrm{Km} / \mathrm{hour}$. Find its acceleration when the car is at the deepest point in the depression. What is the radius of curvature of the depression at this point?
Ans. : $\rho=100 \mathrm{~m}, \mathrm{a}=\mathrm{a}_{\mathrm{n}}=4 \mathrm{~m} / \mathrm{sec}^{2}$
9. The movement of a particle is defined by $r(t)=t i+t^{2} j$ where t is in sec and distances in m. Find the minimum radius of curvature of the path and the velocity and acceleration at this point. (T)
Ans. : $v=1 \mathrm{~m} / \mathrm{sec}, \mathrm{a}_{\mathrm{n}}=2 \mathrm{~m} / \mathrm{sec}^{2}, \rho=0.5 \mathrm{~m}$
10. Particle moves in a plane with constant acceleration $a=2 i m / s^{2}$. At $t=0$ the velocity of the particle was $V_{0}=i+1.732 \mathrm{j} / \mathrm{s}$. Find the radius of curvature of its path at $t=1 \mathrm{sec}$ and the tangential and normal components of the acceleration. (T)
Ans. : $a_{n}=1 \mathrm{~m} / \mathrm{s}^{2}, a_{t}=\sqrt{ } 3 \mathrm{~m} / \mathrm{s}^{2}, \rho=12 \mathrm{~m}$
11. A particle moves in $x y-p l a n e$ with velocity components $V_{x}=(8 t-2) \& V_{y}=2$. If it passes through point $(x, y)=(14,4)$ when $t=2 s e c$, determine the equation of the path traced by the particle. Find also the resultant acceleration at $\mathrm{t}=\mathbf{2} \mathbf{~ s e c}$.
Ans. : $x=y^{2}-y+2, a=8 \mathrm{~m} / \mathrm{s}^{2} \rightarrow$
12. A particle moves with constant speed of $3 \mathrm{~m} / \mathrm{s}$ along the path $y=3 x^{2}$. Find the acceleration of the particle when $x=0.5 \mathrm{~m}$. (T)
Ans. : $1.7 \mathrm{~m} / \mathrm{s}^{2}, 18.45^{0}$

13. A point moves along a path $y=x^{2} / 3$ with a constant speed of $8 \mathrm{~m} / \mathrm{s}$. What are the x and y components of its velocity when $x=3$? What is the acceleration of the point at this instant? Ans. : $V_{x}=3.76 \mathrm{~m} / \mathrm{s}, \mathrm{V}_{\mathrm{y}}=7.152 \mathrm{~m} / \mathrm{s}, \mathrm{a}=3.84 \mathrm{~m} / \mathrm{s}^{2}$
14. The position vector of a particle is given by $r=2 t^{2} . i+4 t^{-2} . j(m)$ where t is in seconds. When $t=$ 1 sec, determine : (a) the magnitudes of normal and tangential components of acceleration of the particle and (b) the radius of curvature of the path.
Ans. : $\mathrm{a}_{\mathrm{t}}=19.68 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{a}_{\mathrm{n}}=14.32 \mathrm{~m} / \mathrm{s}^{2} 5.586 \mathrm{~m}$
15. A skier travels with a constant speed of $6 \mathrm{~m} / \mathrm{s}$ along the parabolic path $y=x^{2} / 20$. Determine his velocity and acceleration at the instant he arrives at A. Neglect the size of the skier in the calculation.
Ans. : $a_{A}=1.27 \mathrm{~m} / \mathrm{s}^{2} \quad 135^{0}$ with horizontal
16. A car is traveling along a circular curve having a radius of 50 m . if its speed is $16 \mathrm{~m} / \mathrm{s}$ and is increasing uniformly at $8 \mathrm{~m} / \mathrm{s}^{2}$, determine the magnitude of its acceleration at this instant.
Ans. : $9.50 \mathrm{~m} / \mathrm{s}^{2}$
17. A jet plane flies along the vertical curve having a radius of 800 m . If is speed is uniformly increased from $180 \mathrm{~m} / \mathrm{s}$ to $230 \mathrm{~m} / \mathrm{s}$ in 4 s , determine the magnitude of its acceleration at the instant the plane's speed is 200 m/s.
Ans. : $51.5 \mathrm{~m} / \mathrm{s}^{2}$
18. A point moves along a path $y=3 x^{2}$ with a constant speed of $8 \mathrm{~m} / \mathrm{s}$. What are the x and y components of its velocity when $x=3 \mathrm{~m}$. What is the acceleration at this point?
