STRAWBERRY

F /strawberrydevelopers B/strawberry_app
For more visit:

Strawberrydevelopers.weebly.com

KINEMATICS OF PARTICLES

1. The acceleration of a particle is defined by $a=k t^{2}(a)$ knowing that $v=-32 \mathrm{~m} / \mathrm{s}$ when $t=0$ and that $v=32 \mathrm{~m} / \mathrm{s}$ when $\mathrm{t}=4 \mathrm{sec}$. Determine k. (b) Write the equations of motion also knowing that $x=0$ when $t=4 \mathrm{sec}$.
Ans.: $k=3, a=3 t^{2}, v=t^{3}-32 \mathrm{~m} / \mathrm{s}, \mathrm{x}=\mathrm{t}^{4} / 4-32 \mathrm{t}+64 \mathrm{~m}$.
2. The acceleration of the particle is defined by the relation $a=25-3 x^{2} \mathrm{~mm} / \mathrm{s}^{2}$. The particle starts with no initial velocity at the position $x=0$. (a) Determine the velocity when $x=2 \mathrm{~mm}$ the position when velocity is again zero (c) position where the velocity is maximum. Ans. : $9.1655 \mathrm{~mm} / \mathrm{s}, \mathrm{x}=5 \mathrm{~mm}, 2,886 \mathrm{~mm}$
3. A particle moving in the +ve x direction has an acceleration. $a=100-4 v^{2} \mathrm{~m} / \mathrm{s}^{2}$. Determine: [a] the time interval and displacement of a particle when speed changes from $1 \mathrm{~m} / \mathrm{s}$ to $3 \mathrm{~m} / \mathrm{s}$. Ans.: $\mathbf{t}=\mathbf{0 . 2 4 5 s}, \mathrm{x}=0.0506 \mathrm{~m}$
4. The car moves in a straight line such that for a short time its velocity is defined by $v=\left(9 t^{2}+2 t\right) f t / s$. Where t is in seconds. Determine its position and acceleration when $t=3 \mathrm{sec}$.

Ans.: s=90 ft, a = 56 ft/s ${ }^{2}$
5. A metallic particle is subjected to the influence of a magnetic field such that it travels vertically through a fluid that extends from plate A to plate B. If particle is released from rest at $C, s=100 \mathrm{~m}$, and the acceleration is measured as $a=(4 \mathrm{~s}) \mathrm{m} / \mathrm{s}^{2}$, where s is in meters, determine the velocity of a particle when it reaches plate $B, s=200 \mathrm{~mm}$, and the time it needs to travel from c to the plate B.

Ans. : $v_{B}=0.346 \mathrm{~m} / \mathrm{s} \downarrow, t=0.657 \mathrm{~s}$
Plate A

6. A particle moves along a horizontal straight line such that its velocity is given by $\mathbf{v}=\left(3 t^{2}-6 t\right)$ m / s, where t is the time in seconds. If it is initially located at the origin 0 , determine the distance travelled during the time interval $t=0$, to $t=3.5 \mathrm{~s}$, the average velocity, and the average speed of the particle during this time interval.
Ans.: $\mathrm{s}_{\mathrm{t}}=14.1 \mathrm{~m}, \mathrm{v}_{\mathrm{avg}}=1.75 \mathrm{~m} / \mathrm{s},\left(\mathrm{v}_{\mathrm{sp}}\right)_{\mathrm{avg}}=4.03 \mathrm{~m} / \mathrm{s}$
7. When a train is travelling along a straight track at $2 \mathrm{~m} / \mathrm{s}$, it begins accelerating at $\mathrm{a}=\left(60 v^{-4}\right)$ $\mathrm{m} / \mathrm{s}^{2}$, where v is in m / s. determine the velocity and the position of the train 3 s after the acceleration. $V=3.86 \mathrm{~m} / \mathrm{s}, \mathrm{x}=14.033 \mathrm{~m} \quad$ (T)
8. A particle travels along a straight line path such that in 4 seconds it moves from an initial position $S_{a}=-8 \mathrm{~m}$ to position $\mathrm{S}_{\mathrm{b}}=+3 \mathrm{~m}$. Then in another 5 seconds it moves from S_{b} to $\mathrm{S}_{\mathrm{c}}=$ -6 m . Determine the particles average velocity and average speed during 9 seconds interval. Ans. : (i) $8 / 9 \mathrm{~m} / \mathrm{s}$, (ii) $20 / 9 \mathrm{~m} / \mathrm{s}$

