STRAWBERRY

If /strawberrydevelopers B /strawberry_app For more visit:
Strawberrydevelopers.weebly.com

WORK ENERGY PRINCIPLE

1. A block weighing 2500 N rests on a level horizontal plane for which coefficient of friction is 0.20 . This block is pulled by a force of 1000 N acting at an angle of 30° to the horizontal. Find the velocity of the block after it moves 30 m starting from rest. If the force of 1000 N is then removed how much further will it move? Use work energy method.
($10.474 \mathrm{~m} / \mathrm{s}, 27.96 \mathrm{~m}$)
2. A body weighing 300 N is pushed up a 30° plane by a 400 N force acting parallel to the plane. If the initial velocity of the body is $1.5 \mathrm{~m} / \mathrm{s}$ and coefficient of kinetic friction is $\mu=0.2$, what velocity will the body have after moving 6 m ? ($8.942 \mathrm{~m} / \mathrm{s}$)

3. The 30 kg crate slides down the path from A to B in the vertical plane, as shown in figure. If the crate has a velocity of $12 \mathrm{~m} / \mathrm{s}$ down the incline at a point A, and $8 \mathrm{~m} / \mathrm{s}$ at B, calculate the work done by friction during the motion from A to B ? (-825.6 J)

4. A ball of mass m is dropped on to a spring of stiffness k from a height h. Find the maximum deflection δ of the spring. Position 1. The ball is at rest at a height h from the top of the spring. Position 2. The ball touches the spring after falling a height h. Position 3. The ball and the spring travel a further distance δ and come to rest in this position. Take $m=5 \mathrm{~kg}, \mathrm{k}=500 \mathrm{~N} / \mathrm{m}, \mathrm{h}=10 \mathrm{~cm}$. ($\delta=26.91 \mathrm{~cm}$)

5. If the spring of Q.4. is placed horizontally (as shown in figure) and the same ball now strikes the spring with a velocity equal to that attained by a vertical fall of height $h=10 \mathrm{~cm}$, find the maximum compression of the spring. ($\delta=0.140 \mathrm{~m}$)

6. The 10 kg block is released from rest on the horizontal surface at point B, where the spring has been stretched a distance of 0.5 m from its neutral position A. The coefficient of kinetic friction between the block and the plane is 0.3 . Calculate (a) The velocity v of the block as it passes point A and (b) the maximum distance x to the left of A that the block goes.
$\mathrm{V}=2.13 \mathrm{~m} / \mathrm{s}, \mathrm{x}=0.304 \mathrm{~m}$
7. A block of mass 5 kg resting on a 30° inclined plane is released. The block after travelling a distance of 0.5 m along the inclined plane hits a spring of stiffness $15 \mathrm{~N} / \mathrm{cm}$. Find the maximum compression of spring. Assume the coefficient of friction between the block and the inclined plane as 0.20 .
(11.5cm)

8. A pre compressed spring compressed to 0.2 m is held by a latch mechanism OA as shown in figure. When the latch is released the spring propels a 30 kg machine part which is being treated at A up the inclined plane onto a conveyor belt at B. the coefficient of friction between machine parts and ne incline is 0.1 . The desired speed of machine part when it reaches the top of incline in $5 \mathrm{~m} / \mathrm{s}$. Determine the spring constant k in KN / m that engineer must use. Angle of inclination of plane is 30° with the horizontal.
Ans. : 53.85KN/m

9. The cylinder has a mass of 20 kg and is released from rest when $h=0$. Determine its speed when $h=3 \mathrm{~m}$. The springs each have an unstretched length of 2 m . (7.05 m / s)

10. Packages having mass of 5 kg are transferred horizontally from one conveyor to the next using a ramp for which the coefficient of kinetic friction $\mu_{k}=0.15$. The top conveyor is moving at $2 \mathrm{~m} / \mathrm{s}$ and packages are spaced 1 m . Determine the required speed of bottom conveyor so that no slipping occurs when packages come horizontally in contact with it. What is the spacing S between the packages on the bottom conveyor? Use work energy principle.
(4.939m/s, 2.47m)

11. Two block A and B of masses 100 kg and 150 kg are connected by string. If the system is released from rest, find the velocity of the block A after it has moved a distance of 1 m . Assume the coefficient of friction between the block A and the horizontal plane as $\mathbf{0 . 2 0}$.
($3.19 \mathrm{~m} / \mathrm{s}$)

12. Two blocks are joined by an inextensible cables as shown.

If the system is released from rest, determine the velocity of block A after lt has moved $2 m$.Assume that the coefficient of kinetic friction between block A and plane is 0.25 and that the pulley is weightless and frictionless.
Ans. : 4.43m/s \leftarrow
13. In what distance will body A weighing 1500 N as shown in figure attain a velocity of $3 \mathrm{~m} / \mathrm{s}$, starting from rest? Pulleys are weightless and frictionless. Coefficient of friction between block and surfaceis0.2.
(3.529m)

14. The force $P=40 \mathrm{~N}$ is applied to the system, which is initially at rest. Determine the speeds of A and B after A has moved 0.4 m . $\mathrm{V}_{\mathrm{a}}=1.180 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{b}}=2.36 \mathrm{~m} / \mathrm{s}$

15. Determine the constant force P that will give the system of bodies shown in figure, velocity of $3 \mathrm{~m} / \mathrm{s}$ after moving 4.5 m from rest. Coefficient of friction between the blocks and the plane is 0.3 . Pulleys are smooth. (1383.39N)

16. Each of the two systems is released from rest. Calculate the velocity \mathbf{v} of each 25 kg cylinder after the 20 kg cylinder has dropped 2 m . The 10 kg cylinder of case (a) is replaced with a 10(9.81) N force in case (b)
(a) $V=1.889 \mathrm{~m} / \mathrm{s}$, (b) $2.09 \mathrm{~m} / \mathrm{s}$

$10 \times 9.81 \mathrm{~N}$

