STRAWBERRY

If /strawberrydevelopers B /strawberry_app
For more visit:

Strawberrydevelopers.weebly.com

KINETICS OF RIGID BODIES

1. A uniform bar $A B$ of mass ' m ' and length ' L ' is supported by wire $C D$ as shown in figure. Determine :
(i) The angular acceleration of bar AB.
(ii) The linear acceleration of free end B
(iii) The reaction at the hinged support A at the instant the wire is cut suddenly.
Take $\mathrm{m}=8 \mathrm{~kg}, \mathrm{~L}=6 \mathrm{~m}, \mathrm{~g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$.

Ans. : (i) $\alpha=2.4525 \mathrm{r} / \mathrm{s}^{2}$ (4)
(ii) $a_{B}=14.715 \mathrm{~m} / \mathrm{s}^{2}(\downarrow)$, (iii) $R_{A}=19.62 \mathrm{~N}(\uparrow)$.
2. The sphere is connected to the rod rigidly and the assembly is pin connected at 0 . It is supported in horizontal position by a rope as shown in figure. Find the angular acceleration \& reaction at point ' O ' at the instant the rope is cut.
Ans. $: \alpha=2.33 \mathrm{r} / \mathrm{s}^{2}(\mathrm{~L}), \quad O_{x}=0, \quad O_{y}=19.41 \mathrm{~N}(\uparrow)$.

3. A homogeneous rod $O A$ of length 600 mm and mass 10 kg is rigidly attached to another uniform rod BC of length 300 mm and mass 2 kg at A as shown in the figure. The system is hinge connected at O and is released from rest in horizontal position. Determine angular acceleration about O just after the release.
$\left[\alpha=21.27 \mathrm{r} / \mathrm{s}^{2}\right.$]

4. A uniform slender rod of length 900 mm and mass 2.5 kg hangs freely from a hinge at A in a vertical plane. At what distance, from A, a force of 15 N is applied so that the horizontal component of the reaction at A is zero? Find the corresponding angular acceleration of the rod. Use preferably D'Alembert's Principle.
5. A workman moves a cylindrical lawn roller of weight $W=4500 \mathrm{~N}$ and radius $r=30 \mathrm{~cm}$ along a horizontal plane by pushing with a constant force F in the direction AC as shown in the figure. What is the magnitude of this force, if after a horizontal displacement $x=3.6 \mathrm{~m}$, the roller has a velocity $V=1.2 \mathrm{~m} / \mathrm{s}$. Assume that the cylinder rolls without slipping.

6. A homogeneous disc of mass ' m ' \& radius ' r ' is allowed to fall as it unwinds as shown in the figure. Find acceleration of thin disc. Also find the tension in the rope.
Ans. : $a=6.66 \mathrm{~m} / \mathrm{s}^{2}, \quad T=m g / 3$.
7. Two identical thin, right circular, discs are arranged in vertical plane as shown in the figure. Neglecting friction, determine the acceleration of the center C of the falling disc. Ans : $\mathrm{a}_{\mathrm{c}}=4 \mathrm{~g} / 5 \mathrm{~m} / \mathrm{s}^{2} \downarrow$
8. If the system is released find the acceleration of Pulley \& block. The compound Pulley has mass 20 kg and radius of gyration 30 cm . Also find the tension in the rope supporting the Pulley.

$$
\text { Ans. }: a_{B}=0.85 \mathrm{~m} / \mathrm{s}^{2}(\downarrow), \quad a_{P}=1.142
$$

$$
\mathrm{m} / \mathrm{s}^{2}(\uparrow), T=588.55 \mathrm{~N}
$$

9. Figure shows a system of bodies A, B and C connected by inextensible cord and mounted on frictionless bearing. The stepped pulley A rolls on inclined the plane without slip. If the system is released from rest, find:
(i) The velocity of C after it moves through 3.6m
(ii) The tension in the cord connecting A and B.

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{i}}=0.3 \mathrm{~m} \\
& \mathrm{R}_{\mathrm{o}}=0.9 \mathrm{~m} \\
& \mathrm{M}_{\mathrm{A}}=100 \mathrm{Kg} \\
& \mathrm{~K}_{\mathrm{A}}=0.5 \mathrm{~m}
\end{aligned}
$$

$\mathrm{R}_{\mathrm{i}}=0.6 \mathrm{~m}$
$\mathrm{R}_{\mathrm{o}}=0.9 \mathrm{~m}$
$\mathrm{M}_{\mathrm{B}}=120 \mathrm{Kg}$
$K_{B}=0.6 \mathrm{~m}$

