STRAWBERRY

If /strawberrydevelopers B /strawberry_app
For more visit:

Strawberrydevelopers.weebly.com

KINETICS OF RIGID BODIES

1. A solid cylinder of mass 30 kg and radius 0.5 m is free to rotate about its axis if a couple of $\mathrm{M}=0.02 \theta^{2} \mathrm{Nm}$ is applied to the cylinder. Find acceleration of point B on the rim when cylinder completes 2 revolutions.
Ans. : w = $2.653 \mathrm{r} / \mathrm{s}(\mathrm{l}), \alpha_{\mathrm{B}}=3.54 \mathrm{~m} / \mathrm{s}^{2}$.
2. The 10 kg drum of a washing machine has a radius of gyration $\mathrm{K}_{\mathrm{A}}=\mathbf{2 0 0} \mathbf{~ m m}$. If the drum is subjected to a moment $\mathrm{M}=(4 \theta) \mathrm{Nm}$ where θ is in radians, determine its angular velocity when it undergoes two revolutions. Also compute the reactions which the fixed pin A exerts on the drum during
 the motion.
Ans. : w = $39.74 \mathrm{r} / \mathrm{s}(\mathbb{\lambda}), R_{A}=98.1 \mathrm{~N}(\uparrow)$.
3. Determine the number of revolutions, the 30 kg disc must make to attain on angular velocity of $20 \mathrm{rad} / \mathrm{s}$ starting from rest.
Ans. : $\theta=2.73 \mathrm{rev}$.

4. A moment of 60 Nm is applied to the uniform disk A that drives uniform disk B without slip. What is the angular acceleration of each disk? Disk A has a mass of 30 kg , radius 600 mm and disk B has a mass of 60 kg and radius 1200 mm . $\left[\alpha_{A}=3.7 \mathrm{r} / \mathrm{s}^{2}, \alpha_{B}=1.85 \mathrm{r} / \mathrm{s}^{2}\right.$]

5. A pulley of mass M.I. $=16.5 \mathbf{~ k g m}^{2}$ is acted upon by two masses as shown in sketch, calculate the angular acceleration of the pulley. The string connected the two masses is massless. Also calculate the tension in each string. Take $\mathrm{g}=10$ $\mathrm{m} / \mathrm{s}^{2}$.
Ans. : $0.68 \mathrm{r} / \mathrm{s}^{2}, 132.476 \mathrm{~N} \& 91.683 \mathrm{~N}$.

6. A compound pulley system as shown in figure has a mass of 30 kg and a radius of gyration of 450 mm . Determine the tension in each cord and angular acceleration of the pulley when the masses of 50 kg and $150 \mathrm{~kg}_{2}$ which the pulley supports are released. Take $\mathrm{g}=$ $10 \mathrm{~m} / \mathrm{s}^{2}$.
Ans. : $\alpha=3.99 \mathrm{r} / \mathrm{s}^{2}, 1320.45 \mathrm{~N}, 619.7 \mathrm{~N}$.
7. See figure Block $A \& B$ have masses of $\mathbf{4 5} \mathbf{~ k g}$ and $\mathbf{6 0} \mathbf{~ k g}$ respectively. The drum has a M.I., $\mathrm{I}=16 \mathrm{kgm}^{2}$. Through what distance will 'A' fall before it reaches a speed of 2 m / s ?
Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.
Ans. : $S_{A}=0.571 \mathrm{~m}$.

8. The system shown in figure is released from rest. Find acceleration of block \mathbf{C} and tension in the ropes.
Ans. : $a_{c}=2.82 \mathrm{~m} / \mathrm{s}^{2}(\downarrow), T_{\text {BET. PULLEYS }}=132.43 \mathrm{~N}, T_{C}=287.2 \mathrm{~N}$.

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{B}}=20 \mathrm{Kg} \\
& \mathrm{~K}_{\mathrm{B}}=25 \mathrm{~cm}
\end{aligned}
$$

9. Two double pulleys shown in figure are connected to each other by a string as shown. If each pulley is mounted on frictionless bearings, mass M.I. of each pulley is $0.2 \mathrm{kgm}^{2}$ and inner and outer radii of each pulley are 80 mm and 120 mm respectively, then calculate acceleration of the mass $C(6 \mathrm{~kg})$ and tension in the string connected the two pulleys. Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

Ans. : $a=0.558 \mathrm{~m} / \mathrm{s}^{2}, \quad T=26.15 \mathrm{~N}$.

