STRAWBERRY

©f /strawberrydevelopers

> B /strawberry_app
For more visit:

Strawberrydevelopers.weebly.com

KINETICS OF PARTICLES

1. A vertical lift of total mass 750 kg acquires an upward velocity of $3 \mathrm{~m} / \mathrm{s}$ over a distance of 4 m moving with constant acceleration starting from rest. Calculate the tension in the cable. Take g= $10 \mathrm{~m} / \mathrm{s}^{2}$
Ans:8343.75N
2. The 50 Kg crate shown in figure rests on a horizontal plane for which the coefficient of kinetic friction is 0.3 . If the crate is subjected to a 400 N towing force as shown,
 determine the velocity of the crate in 5 sec starting from rest.
Ans. : $a=5.19 \mathrm{~m} / \mathrm{s}^{2}, \quad v=26 \mathrm{~m} / \mathrm{s} \rightarrow$
3. Three particles $m_{1}, m_{2} \& m_{3}$ of masses $1.5 \mathrm{Kg}, \mathbf{2 K g} \& 1 \mathrm{Kg}$ respectively are placed on a rough surface with, as shown. If a force F is applied to accelerate the blocks at
 $3 \mathrm{~m} / \mathrm{s}^{2}$, what will be the force that 1.5 Kg block exerts on $\mathbf{2 K g}$ block? (Coefficient of friction $\mu=0.20$) Ans. : F=22.5 N, P=15N
4. Two blocks ' A ' and ' B ' are held stationary 10 m apart on a 20° incline as shown. The cofft. of dynamic friction between the plane and ' A ' is 0.3 and for ' B ' is 0.1.If the blocks are released simultaneously, find the time taken and the distance traveled by each block before they are on the verge of colliding.
Ans. : $t=3.351 \mathrm{sec}, x=3.246 \mathrm{~m}$ from A
5. Two blocks A (mass 8 kg), B (mass 32 kg) are connected by a pin connected light rod as shown in the figure. If the blocks start moving find the velocity of each block after 2 sec . Assume $\mu=0.25$ for block A and plane and $\mu=0.10$ for block B and plane.

Ans. : 7.6m/s
6. An airplane has a mass of 25000 Kg and its engine develops a total thrust of 40 KN along the runway. The force of air resistance to motion is given by $D=2.25 \mathrm{~V}^{2}$, where V is in m / s and D in Newtons. Determine the length of the runway required if the plane takes off and in airborne at a speed of 240 km/h.
Ans. : 1600 m
7. Block P_{1} of weight $4 N$ is connected to block P_{2} of weight 8 N by an extensible string. Find the velocity of block P_{1} if it falls by 0.6 m starting from rest. Coefficient of friction is $\mathbf{0 . 2}$.
Ans.: 1.53 m/s

8. The 2 blocks shown start from rest. The horizontal plane and pulley are frictionless, and the pulley is assumed to be of negligible mass. Determine the acceleration of each block and tension in cord. Ans. : $a_{A}=8.40 \mathrm{~m} / \mathrm{s}^{2}, a_{B}=4.2 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~b}) \mathrm{T}_{1}=840 \mathrm{~N}, T_{2}=1680 \mathrm{~N}$

9. The 100 Kg block A shown in fig is released from rest. If the mass of the pulleys and chord is neglected, determine the speed of the 20 Kg block B in 2 Sec.
Ans.: 13.1 m/s upward

10. Figure shows two masses $m_{1}=1 \mathrm{Kg}$ and $m_{2}=2 \mathrm{Kg}$ connected by rope and rope passing over two smooth pulleys P_{1} and P_{2} Mass $m_{3}=5 \mathrm{Kg}$ is supported from the movable pulley P_{2}. If the inclination of the inclined pulley is α where tan $\alpha=3 / 4$. Coefficient of friction is 0.1 .Determine the motion of the system neglecting the weight of pulley \mathbf{P}_{2}.

12. If the system shown in figure is released from rest, find the acceleration of cylinder B. Neglect the mass of pulleys and chords. Ans.: $a_{B}=2.89 \mathrm{~m} / \mathrm{s}^{2}$

13. In the system shown in figure the pulleys are to be considered mass less and frictionless. The masses in Kg are 1,2,3 and 4.Determine the acceleration of each mass and tension in the fixed cord.

