STRAWBERRY

E /strawberrydevelopers

 B/strawberry_appFor more visit:

Strawberrydevelopers.weebly.com

SIMPLE HARMONIC MOTION

1. The piston of steam engine moves with simple harmonic motion. The crank rotate3s at 120 rpm and the stroke length is 2 metres. Find the velocity and acceleration of the piston, when it is at a distance of 0.75 metre from the centre.
Ans: $\mathrm{a}=118.4 \mathrm{~m} / \mathrm{s}^{2}$
2. A body moving with simple harmonic motion, has an amplitude of 1 meter and the period of complete oscillation is 2 seconds. What will be the velocity and acceleration of the body after 0.4 second from the extreme position?

Ans: $\mathrm{a}=9.38 \mathrm{~m} / \mathrm{s}^{2}$
3. Find amplitude and time period of a particle moving with simple harmonic motion, which has a velocity of $9 \mathrm{~m} / \mathrm{s}$ at the distance of 2 m and 3 m respectively from the centre.
Ans: $\mathrm{t}=1.75 \mathrm{~s}$
4. In s system the amplitude of the motion is 5 m and the time is 4 seconds. Find the time required by the particle in passing between points which are at distances of 4 m and 2 m from the centre of force and are on the same side of it.

Ans: $\mathrm{t}=0.33 \mathrm{~s}$
5. A body performing simple harmonic motion has a velocity of $12 \mathrm{~m} / \mathrm{s}$ when the displacement is 50 mm , and $3 \mathrm{~m} / \mathrm{s}$ when the displacement is 100 mm , the displacement being measured from the mid-point. Calculate the frequency and amplitude of the motion. What is the acceleration when the displacement is 75 mm ?
Ans: $\mathrm{a}=1332.6 \mathrm{~m} / \mathrm{s}^{2}$
6. A particle moving with simple harmonic motion has an acceleration of $6 \mathrm{~m} / \mathrm{s} 2$ at a distance of 1.5 m from the centre of oscillation. Find the time period of the oscillation.

Ans: $\mathrm{a}=1332.6 \mathrm{~m} / \mathrm{s}^{2}$
7. A body weighing 150 N moves with simple harmonic motion. The velocity and acceleration of the body when it is 200 mm from the centre of oscillation are $5 \mathrm{~m} / \mathrm{s}$ and $20 \mathrm{~m} / \mathrm{s} 2$ respectively. Determine (a) amplitude of motion and, (b) no. of vibrations per minute.
Ans: 539mm, 95.5
8. A particle moves with simple harmonic motion. Wen the particle is 0.75 m from the mid-path, its velocity is $11 \mathrm{~m} / \mathrm{s}$ and when 2 m from the mid-path its velocity is $3 \mathrm{~m} / \mathrm{s}$. Find the angular velocity, periodic time and its maximum acceleration.
Ans: $\mathrm{a}=1332.6 \mathrm{~m} / \mathrm{s}^{2}$
9. A particle moving with simple harmonic motion, has a velocity of $20 \mathrm{~m} / \mathrm{s}$ at its central position. If the particle makes two oscillations per second, find (i) amplitude of motion and (ii) velocity at $1 / 4^{\text {th }}$ distance of the amplitude.
Ans1.59 m, 19.35 m/s

