


Computer	Programming-I	

Developed	by:	Strawberry	



Objec=ve	of	CP-I	

The course will enable the students to understand the basic 
concepts of structured programming. 

Developed	by:	Strawberry	



What	is	programming?	
•  Wri=ng	a	set	of	instruc=ons	that	computer	

use	to	perform	specific	opera=ons.	

		

Developed	by:	Strawberry	



What	is	programming	language?	

•  Set of instructions are written in a programming language. 

•  Need for programming language – to communicate 
instructions to machine (computer). 

		

Developed	by:	Strawberry	



Developed	by:	Strawberry	

What	is	Programming	?	

•  Art of solving computational problems by computer. 

•  Computer is an electronic device and does not understand 
natural language. 

•  Set of symbols, characters, grammar rules that permit people 
to construct instructions in the format that can be interpreted 
by the computer system. 



Developed	by:	Strawberry	

Language	Types	
Types of Programming Languages

Machine
Language

Assembly
Language

Low-level
Language

Procedural
Language

Fourth Generation
Languages(4GLs)

Visual Programming
Languages

High-level
Language

Programming
Languages



Developed	by:	Strawberry	

Language	Genera=ons	
On	the	basis	of	development,	programming	languages	
can	be	divided	into	5	genera=ons	:	

First 
Generation Language 

Machine Language 
(1940 – 1950) 

Second 
Generation Language 

Assembly Language 
(1950 – 1958) 

Third 
Generation Language 

Procedural Languages 
(1958 – 1985) 

Fourth 
Generation Language 

4GLs 
(1985 onwards) 

Fifth 
Generation Language 

Visual/Graphic Languages 
(1990 onwards) 



Developed	by:	Strawberry	

Machine	Level	Language	(1940-50)	

•  Language	containing	binary	code	(1,0)	which	
the	computer	can	understand.	

•  Instruc=on	contains	two	parts:	
– Opera=on	Part	–	Specifies	what	is	to	be	performed.	

– Address	Part	–	Specifies	the	loca=on	of	data	to	be	
manipulated.	



Developed	by:	Strawberry	

Advantages-Machine	Language	
•  Directly	executable.	
•  Most	efficient	use	of	computer	system	

resources	like	storage,	register,	etc.	

•  Can	be	used	to	manipulate	individual	bits.	



Developed	by:	Strawberry	

Disadvantages-Machine	Language	

•  Not portable as device dependent. 

•  More error prone and difficult to debug. 

•  Storage locations have to be addressed directly, and not 
symbolically. 

•  Increases programmer training cost as requires a high level of 
programming skills. 

•  Requires knowledge of the computer’s intricate details. 



Developed	by:	Strawberry	

Assembly	Language	(1950-58)	
•  Substitute alphabetic symbols for the binary codes of machine language. 

•  Symbols – memory locations. 

•  Mnemonics – operation code. 

•  One-to-one correspondence between assembly & machine language. 

•  Requires an assembler to convert assembly language into machine language. 

•  MVI	B,	06											//Load	Register	B	with	the	Hex	value	06		

•  MOV	A,	B										//Move	the	value	in	B	to	the	Accumulator	or	register	A		

•  MVI	C,	07										//Load	the	Register	C	with	the	second	number	07		

•  ADD	C															//Add	the	content	of	the	Accumulator	to	the	Register	C		

•  STA	8200										//Store	the	output	at	a	memory	loca=on	e.g.	8200		

•  HLT																			//Stop	the	program	execu=on 



Developed	by:	Strawberry	

Advantages-Assembly	Language	
•  Because symbols are meaningful, it is easier to read and 

understand. 

•  Relieves users of the problems in allocating computer 
storage. 

•  Encourages modular programming. 

•  Used only when efficiency is the must or when there is a 
need to manipulate processor registers, signals, etc. 



Developed	by:	Strawberry	

Disadvantages-Assembly	Language	
•  Machine-dependent and hence not portable. 

•  Knowledge of details of logical structure of the computer. 

•  Writing is difficult & time-consuming. 

•  Requires rigorous training. 

•  Not directly executable, require Assembler. 

•  One-to-one correspondence with machine language. 



Developed	by:	Strawberry	

Assembler	
•  A program to translate an assembly program (source code) 

into its machine equivalent(object code). 

•  Procedure : 
– After the object program is created, it is transferred into 

the computer’s primary memory using the system’s loader. 

– Another program called link editor passes computer 
control to the first instruction in the object program, and 
then the execution starts and proceeds till the end of the 
program. 



Developed	by:	Strawberry	

High	Level	languages	(1958….)	
•  They are machine-independent as they relate to the 

procedures being coded. 

•  A HLL program can be executed on any computer system 
that has a translator for that HLL. 

•  Translated into machine code by compilers & interpreters. 

•  Written in English-like language. 



Developed	by:	Strawberry	

Advantages-HLL	
•  Machine-independent hence portable. 

•  Easier to learn & requires less time to code. 

•  Provides better documentation. 

•  Libraries of subroutines can be incorporated and used in 
many other programs. 

•  Easier to debug as translators display all errors with proper 
error messages. 



Developed	by:	Strawberry	

Some	High	Level	Languages	
FORTRAN Engineering and Scientific work 
COBOL Business data processing 
BASIC Learnt quickly by beginners, popular 

among users of small computers 
PASCAL Used in teaching computer programming, 

useful in system programs because of rich 
data structure representation. 

SNOBOL Used in Symbol manipulation 
LISP Solving logical complex problems (chess, 

prove theorems) 
ADA Complex military applications 



Developed	by:	Strawberry	

Translators	
INTERPRETER COMPILER 

Translates the program line by line. Translates the entire program. 
Each time the program is executed, 
every line is checked for syntax and 
then converted to equivalent machine 
code. 

Converts the entire program to 
machine-code, when all the 
syntax errors are removed, and 
executes the object code directly. 

Source program & the interpreter are 
required for execution. 

Neither source nor the compiler 
are required for execution. 

Good fro fast debugging and at testing 
stage. 

Slow for debugging and testing. 

Execution time is more. Execution time is less. 
No security of source code. Security of source code. 
- Basic - C, Cobol, Pascal, Fortran 



Programming	Concepts	?	

•  Computer	requires	instruc=ons	to	be	given	
for	any	job	to	be	done.	

•  Students	need	to	know	as	part	of	course	
and	job.	

•  Later	on	just	a	maaer	of	knowing	the	
syntax.	

Developed	by:	Strawberry	



Program	Development	Steps	

•  Algorithm	

•  Flowchart	
•  Program	

In	 order	 to	 solve	 a	 problem	 using	 a	

computer	 it	 is	 necessary	 to	 evolve	 a	

detailed	and	precise	step	by	step	method	

of	solu=on.	

Developed	by:	Strawberry	



Algorithm	

•  Finite	sequence	of	instruc=ons	(to	solve	a	problem).	

•  The	development	of	a	proper	procedure	to	get	the	
required	results.	

n  Inputs	

n  Precise	&	unambiguous	processing	rules	

n  Basic	instruc=ons	

n  Finite	steps	

n  Outputs	

Characteris=cs	

Developed	by:	Strawberry	



Points	for	developing	Algorithm	

•  Every	 procedure	 should	 carefully	 specify	
the	input	and	output	requirements.	

•  Meaning	 of	 variables	 should	 be	 clearly	

defined.	

•  The	 flow	of	 program	 should	 generally	 be	

forward	 except	 for	 normal	 looping	 and	

unavoidable	instance.	

Developed	by:	Strawberry	



Example	
Problem	:	
Obtain	the	percentage	of	marks	obtained	by	a	student	in	an	examina=on.	

	

Solu,on	:	
I/P	:	In	the	problem	maximum	marks	and	marks	obtained	is	given.	

O/P	:	The	required	result	is	percentage	of	marks	and	the	formula	used	is	

%	of	marks	=	Marks	obtained			X		100	

			 	 									Maximum	marks	

Algorithm	:	
Step	1	:	Read	name,	marks	obtained,	and	maximum	marks.	

Step	2	:	Divide	marks	obtained	by	maximum	marks	and	store	it	in	Per.	

Step	3	:	Mul=ply	Per.	by	100	to	get	percentage.	

Step	4	:	Write	name	and	percentage.	

Step	5	:	Stop.	
Developed	by:	Strawberry	



Flowchart	

•  A	detailed	graph	which	represents	steps	to	
be	 performed	 within	 the	 machine	 to	

produce	the	needed	output.	

•  Algorithm	represented	in	pictorial	form.	

•  Requires	 only	 a	 few	 symbols	 in	 program	

char=ng	 to	 indicate	 the	 necessary	

opera=ons.	

Developed	by:	Strawberry	



Characteris=cs	of	FCs	

•  An	 aid	 in	 formula=ng	 and	 understanding	
algorithms.	

•  Easy	visual	recogni=on,	a	standard	conven=on	is	
used	in	drawing	flow	charts.	

•  Sequencing	 &	 repe==on	 instruc=ons	 easily	
visible.	

•  Helps	 in	 detec=ng,	 loca=ng,	 and	 removing	
mistakes	 if	 the	 program	 fails	 to	 run	 to	
comple=on.	

•  The	 program	 FC	 acts	 as	 a	 guide	 or	 blueprint	
during	the	program	prepara=on	phase.	

Developed	by:	Strawberry	



Characteris=cs	of	FCs….	
•  Leads	to	quicker	grasp	of	rela=onships.	
•  It	becomes	a	model	of	a	program	or	system	that	can	

be	broken	down	into	detailed	parts	for	study.	

•  Can	be	used	as	working	models	in	the	design	of	new	

programs	and	systems.	

•  Program	Documenta=on.	

•  Aid	in	communica=ng	the	facts	of	a	problem	to	those	

whose	skills	are	needed	in	the	solu=on.	

Developed	by:	Strawberry	



Symbols	used	in	Program	FCs	

•  Input/Output	(Parallelogram)	

– Used	to	represent	I/O	opera=ons.	
– Have	two	flow	lines,	entry	&	exit.	
	

•  Processing	(Rectangle)	

– Storage	&	Arithme=c	opera=ons.	

– Have	two	flow	lines,	entry	&	exit.	

Symbols	 adopted	 by	 the	 American	 Na=onal	
Standards	Ins=tute	(ANSI).	

Developed	by:	Strawberry	



•  Terminal	(Rounded	Rectangle)	
–  Used	to	indicate	START	&	STOP.	
–  Has	a	single	entry	or	exit	line.	
	

•  Decision	(Diamond)	
–  Logic/comparison	opera=ons.	

–  Has	 one	 entry	 and	 at	 least	 two	 exit	 paths	 or	
branches.	

–  The	 exits	 are	 labeled	 with	 the	 answers	 to	 the	
decision	ques=on.	

•  Flow	(Line	with	Arrow)	

– Most	important	in	a	Flow	Chart.	

–  Indicates	the	flow	of	logic	of	the	program.	

–  All	the	other	flow	chart	symbols	are	connected	by	
the	flow	line.	

Developed	by:	Strawberry	



•  Connector	(Circle)	

– Used	when	 addi=onal	 flow	 lines	might	 cause	

confusion	and	reduce	understanding.	

– Two	connectors	with	iden=cal	labels	serve	the	
same	func=on	as	a	long	line.	

	

•  Predefined	 Process	 (Rectangle	 with	

end	lines)	

– Certain	processing	opera=ons	are	repeated	in	
programs	which	 are	 grouped	 into	 a	 separate	

procedure.	

– A	 single	 symbol	 replaces	 a	 number	 of	

opera=ons	that	need	not	be	detailed.	

Entry	Point	

Exit	Point	

Developed	by:	Strawberry	



Limita=ons	of	FCs	

•  Complex	and	detailed	charts	are	laborious	

to	plan	and	draw.	

•  No	standards	determining	the	amount	of	

detail	that	should	be	included	in	a	chart.	

Developed	by:	Strawberry	



Example	
Problem	:	
Obtain	the	percentage	of	marks	obtained	by	a	student	in	an	examina=on.	

Start	

Stop	

Input	name,	mks.,	max.	mks.	

Per=marks/max.	marks	

Per=PerX100	

Print	name	&	per	

Developed	by:	Strawberry	



Program	

•  Expresses	 the	 flow	 chart/algorithm	 in	 a	 more	
precise	 and	 concise	 nota=on	 to	 be	 fed	 to	 the	
computer	for	execu=on.	

•  Machine-Independent	 :	 Primary	 objec=ve	 is	 to	
facilitate	 a	 large	 number	 of	 people	 to	 use	
computers	without	 the	 need	 to	 know	 in	 detail	
the	internal	structure	of	the	computer.	

•  The	 specifica=on	 of	 the	 sequence	 of	
computa=ona l	 s t ep s	 i n	 a	 pa r=cu l a r	
programming	language	is	termed	as	a	program.	

Developed	by:	Strawberry	



Programming	Techniques	

•  Linear	Programming	
	When	programming	started	the	size	and	scope	

of	the	programs	was	small.	

	

•  Structured	Programming	
	 Introduced	as	 the	 size	and	scope	of	programs	

grew,	 the	 tradi=onal	 linear	 approach	 to	

programming	 made	 programs	 unstructured	

and	difficult	to	understand.	
Developed	by:	Strawberry	



Linear	Programming	

•  Straighmorward	programming	 in	 a	 sequen=al	
manner.	

•  Does	not	involve	any	decision	making.	

		

	General	model	of	a	linear	program	:	
1. Read	a	data	value.	
2. Compute	an	intermediate	result.	

3. Use	 the	 intermediate	 result	 to	 compute	 the	
desired	answer.	

4. Print	the	answer.	
5. Stop.	

Developed	by:	Strawberry	



Structured	Programming	

•  It	 refers	 to	 the	 process	 in	 which	 we	 break	 the	
overall	job	down	into	separate	piece	of	modules.	

•  Digital	 computers	 can	 make	 a	 decision,	 thus	

crea=ng	a	branching	point.	

•  If	branching	and	 looping	can	be	use,	 then	more	

complex	 itera=ve	 algorithms	 can	 be	 developed	

into	complex	programs.	

•  Complex	 programs	 that	 make	 them	 less	 error	

prone	and	easier	to	debug.	

Developed	by:	Strawberry	



Choice	of	Modules	

•  Modules	must	be	chosen	in	such	a	way	that	we	

can	specify	how	they	are	to	interact.	

•  There	must	be	a	contact	between	each	modules.	

•  Contacts	specify	:	
– What	the	module	will	do	?	

– What	inputs	a	par=cular	module	is	to	receive	from	

the	various	other	modules	and	what	outputs	it	is	

required	to	provide	for	them	?	

Developed	by:	Strawberry	



Advantages	of	Struct.	Prog.	
•  Decreases	the	complexity	of	the	program.	

•  Allows	several	programmers	to	code	simultaneously.	

•  Allows	reuse	of	common	func=ons	across	programs.	

•  Isolates	errors	hence	decreases	debugging.	
•  Amendments	to	single	module	does	not	affect	the	rest	of	the	

program.	

•  As	it	is	a	standard	method	takes	less	=me	to	write.	

•  Easy	naming	of	modules	help	to	locate	easily	in	

documenta=on.	

Developed	by:	Strawberry	



Modular	Design	of	Programs	

•  Program	is	designed	as	a	set	of	units	referred	to	as	blocks	or	

modules.	

•  The	modules	reflect	a	logical	flow	for	a	computer	program.	

•  Modules	basically	have	:	

–  Input	
–  Output	
–  Func=on	
–  Mechanism	

–  Internal	Data	
•  Modules	are	arranged	at	different	levels	into	a	structured	

chart	and	all	are	connected.	
Developed	by:	Strawberry	



Module	Connec=on	Rules	

•  Only	one	module	at	the	top	of	the	structure	called	the	
root	module.	

•  The	root	passes	control	down	the	structure	chart	to	
the	lower	level	modules.	Control	is	always	returned	to	
the	invoking	module	and	a	finished	module	should	
always	terminate	at	the	root.	

•  There	cannot	be	more	than	one	control	rela=onship	
between	any	two	modules	on	the	structure	chart.	If	
module	A	invokes	module	B,	then	B	cannot	invoke	
module	A.	

Developed	by:	Strawberry	



Example	

Structured Module Chart

Crow Sparrow

Winged

Penguin

Not_Winged

Bird

Lion

Wild

Dog

Domestic

Animal

Frog

Amphibian

Creature

Developed	by:	Strawberry	



Program	Instruc=on	Types	

•  Statements	to	establish	the	start	of	the	

program.	

•  Variable	declara=on.	
•  Program	statements	(blocks	of	code).	

– Expressions.	
– Programming	Constructs.	

Developed	by:	Strawberry	



Variable	Declara=on	

•  Place	 holders	 for	 data	 a	 program	might	 use	 or	
manipulate.	

•  Variables	are	given	names	so	that	we	can	assign	
values	 to	 them	and	 refer	 to	 them	 later	 to	 read	
the	values.	

•  They	are	declared	at	the	start	because	 in	order	
to	use	a	variable	within	a	program,	the	compiler	
needs	to	know	in	advance	the	type	of	data	that	
will	be	stored	in	it.	

•  Variable	 typically	 stores	 value	 (content)	 of	 a	
given	type	(characteris=c	of	the	variable).		

Developed	by:	Strawberry	



Variable	Type	

n  Integer To store integer or "whole" numbers. 

n Real To store real or fractional numbers 
(also called float to indicate a 
floating point number). 

n Character A single character such as a letter of 
the alphabet or punctuation. 

n String A collection of characters. 

Developed	by:	Strawberry	



Expressions	

•  Expressions	are	made	up	of	a	combina=on	
of	variables	&	operators	which	act	on	it.	

•  Operators	work	with	respect	to	precedence	
&	associa=vity	rules	set	for	the	language.	

•  Some	operators	are	:	

– Arithme=c	(Mathema=cal)	

– Logical	(Boolean)	
– Rela=onal	(Comparison)	

Developed	by:	Strawberry	



Operators	

•  Arithme=c	

– Add,	Subtract,	Mul=ply,	Divide,	Remainder.	

•  Logical	
– And,	Or,	Not.	

•  Rela=onal	
– Less	 than,	 Greater	 than,	 Equal	 to,	 Not	 equal	
to,	Less	than	equal	to,	Greater	than	equal	to.	

Developed	by:	Strawberry	



Programming	Constructs	

•  Control	 statements	"control"	which	sec=ons	of	
code	in	a	program	are	to	be	executed.	

•  Types	of	Control	Statements	are	:	

– Sequen=al	 -	 The	 default	 ordering	 of	
execu=on.	

– Selec=on	 (Condi=onal)	 -	 Controls	 which	
block	 of	 code	 within	 several	 alterna=ves	 is	
executed.	

–  Itera=ve	 -	 controls	 how	many	=mes	 a	 block	
of	code	is	executed.	

Developed	by:	Strawberry	



Thank	You	

Developed	by:	Strawberry	




