


ASSEMBLER DIRECTIVES

Richa Upadhyay Prabhu

NMIMS’s MPSTME

richa.upadhyay@nmims.edu

January 12, 2016

Richa Upadhyay Prabhu 8086 Microprocessors



ASSEMBLER DIRECTIVE

The words defined in this section are directions to the
assembler, not instructions for the 8086.

Richa Upadhyay Prabhu 8086 Microprocessors



ASSEMBLER DIRECTIVE

ASSUME

It is used to tell the assembler that the name of the logical
segment should be used for a specified segment.

Works directly with only 4 physical segments: a Code
segment, a data segment, a stack segment, and an extra
segment.

Example:

ASSUME CS:CODE ; This tells the assembler that the
logical segment named CODE contains the instruction
statements for the program and should be treated as a code
segment.

ASSUME DS:DATA ; This tells the assembler that for any
instruction which refers to a data in the data segment, data
will found in the logical segment DATA.

Richa Upadhyay Prabhu 8086 Microprocessors



ASSEMBLER DIRECTIVE

DB: DEFINE BYTE

DB directive is used to declare a byte-type variable or to store
a byte in memory location

EXAMPLE:

PRICE DB 49h, 98h, 29h ; Declare an array of 3 bytes

NAME DB ABCDEF ; Declare an array of 6 bytes and
initialize with ASCII code for letters

TEMP DB 100 DUP(?) ; Set 100 bytes of storage in memory
and give it the name as TEMP, but leave the 100 bytes
uninitialized. Program instructions will load values into these
locations.

Richa Upadhyay Prabhu 8086 Microprocessors



ASSEMBLER DIRECTIVE

DW: DEFINE WORD

It is used to define a variable of type word i.e. assembler
reserves the no. of memory words 16-bits.

EXAMPLE:

MULTIPLIER DW 437Ah

EXP1 DW 1234h, 3456h, 5678h

STOR1 DW 100 DUP(0) ; Reserve an array of 100 words of
memory and initialize all words with 0000.Array is named as
STOR1.

Richa Upadhyay Prabhu 8086 Microprocessors



ASSEMBLER DIRECTIVE

DD: DEFINE DOUBLEWORD
Example, TEMP DD 25629261h

DQ : DEFINE QUADWORD ; reserve 4 words of storage in
memory

Richa Upadhyay Prabhu 8086 Microprocessors



ASSEMBLER DIRECTIVE

END : End of program

ENDP : End of Procedure (Sub programs)

procedures are usually given a name i.e. LABEL

PROCEDURE ADD
.
.
.
ADD ENDP

Richa Upadhyay Prabhu 8086 Microprocessors



ASSEMBLER DIRECTIVE

ENDS : End of Segment

Marks end of logical segment

DATA SEGMENT
.
.
.
DATA ENDS
ASSUME CS: CODE,DS: DATA
CODE SEGMENT
.
.
.
CODE ENDS
END

Richa Upadhyay Prabhu 8086 Microprocessors



ASSEMBLER DIRECTIVE

EQU : Equate

This EQU directive is used to give a name to some value or to
a symbol

Each time the assembler finds the name in the program, it will
replace the name with the value or symbol you given to that
name.

Example:

FACTOR EQU 03H ;
ADD AL, FACTOR ; When it codes this instruction the
assembler will code it as ADD AL, 03H

Richa Upadhyay Prabhu 8086 Microprocessors



ASSEMBLER DIRECTIVE

EXTRN : External and PUBLIC

The EXTRN directive informs the assembler that the names,
procedures and labels declared after this directive have already
been defined in some other assembly language module.

In modules where the names, procedures and labels actually
appear,they must be declared public using PUBLIC directive.

Richa Upadhyay Prabhu 8086 Microprocessors



ASSEMBLER DIRECTIVE

GROUP : Group the related segment

Example ;
PROGRAM GROUP CODE,DATA,STACK

The above statement directs the loader/linker to prepare an
EXE file such that the CODE, DATA and STACK segment
must lie within a 64 kb memory segment and is named as
PROGRAM.

Now ASSUME statement, one can use the label PROGRAM
ASSUME CS: PROGRAM,DS: PROGRAM,SS: PROGRAM

Richa Upadhyay Prabhu 8086 Microprocessors



ASSEMBLER DIRECTIVE

LABEL :Used to assign a name to the current content of the
location counter

LENGTH : Determine number of elements in some named data
item, such as string or array

ORG - ORIGINATE : Allows to set location counter to desired
value (which by default is 0000h at start of program) at any point
in program

SEGMENT : Indicate start of a logical segment

Richa Upadhyay Prabhu 8086 Microprocessors



Let’s have a look at the instruction set :

Richa Upadhyay Prabhu 8086 Microprocessors



INSTRUCTION SET

DATA TRANSFER INSTRUCTIONS

General purpose byte or word transfer instructions:
MOV
PUSH
POP
XCHG
XLAT
Input and output port instructions
IN
OUT
Special Address Transfer
LEA
LDS
LES
Flag transfer instructions
LAHF
SAHF
PUSHF
POPF Richa Upadhyay Prabhu 8086 Microprocessors



INSTRUCTION SET

ARITHMETIC INSTRUCTIONS

Addition Instructions
ADD
ADC
INC
AAA
DAA
Subtraction Instruction
SUB
SBB
DEC
NEG
CMP
AAS
DAS

Richa Upadhyay Prabhu 8086 Microprocessors



INSTRUCTION SET

ARITHMETIC INSTRUCTIONS

Multiplication Instruction
MUL
IMUL
AAM
Division instruction
DIV
IDIV
AAD
CBW
CWD

Richa Upadhyay Prabhu 8086 Microprocessors



INSTRUCTION SET

BIT MANIPULATION INSTRUCTIONS

Logical : NOT, AND, OR, XOR, TEST
Shift : SHL/SAL, SHR

Rotate : ROL, ROR, RCL, RCR

Richa Upadhyay Prabhu 8086 Microprocessors



INSTRUCTION SET

PROGRAM EXECUTION TRANSFER INSTRUCTIONS

Unconditional transfer : CALL, RET, JMP
Conditional transfer : JA/JNBE, JC ,JNC, JS, etc
Iteration control : LOOP, LOOPZ, LOOPNZ

Interrupt Instructions : INT, INTO, IRET

Richa Upadhyay Prabhu 8086 Microprocessors



INSTRUCTION SET

PROCESSOR CONTROL INSTRUCTIONS

Flag set/clear instructions :
STC, CLC,CMC,STD,CLD,STI,CLI

External hardware sync. instruction
HLT, WAIT, ESC, LOCK

No operation instruction

NOP

Richa Upadhyay Prabhu 8086 Microprocessors



Implementing Standard Program Structure

Setting up data structures :

Will data be in memory or in registers?

Datatype: byte, word, double word ?

no. of data items.

data is signed or unsigned ?

Richa Upadhyay Prabhu 8086 Microprocessors



Implementing Standard Program Structure

Consider a PROBLEM STATEMENT :

Write an assembly language program for addition of two 8-bit
numbers.

Data Structure :

VAR1 DB 85H
VAR2 DB 32H
RES DB ?

Richa Upadhyay Prabhu 8086 Microprocessors



Implementing Standard Program Structure

Consider a PROBLEM STATEMENT :

Write an assembly language program for addition of two 8-bit
numbers.

Data Structure :

VAR1 DB 85H
VAR2 DB 32H
RES DB ?

Richa Upadhyay Prabhu 8086 Microprocessors



Implementing Standard Program Structure

Define data structure in DATA SEGMENT, use SEGMENT and
END directives

DATA SEGMENT

VAR1 DB 85H
VAR2 DB 32H
RES DB ?

DATA ENDS

Richa Upadhyay Prabhu 8086 Microprocessors



Implementing Standard Program Structure

use ASSUME directive

DATA SEGMENT

VAR1 DB 85H
VAR2 DB 32H
RES DB ?

DATA ENDS

ASSUME CS:CODE,DS:DATA ; logical segment named CODE
contains instructions and should be treated as code segment

Richa Upadhyay Prabhu 8086 Microprocessors



Implementing Standard Program Structure

Begin writing code in the CODE SEGMENT and also use directive
START and END START while writing.

DATA SEGMENT
VAR1 DB 85H
VAR2 DB 32H
RES DB ?

DATA ENDS
ASSUME CS:CODE, DS:DATA
CODE SEGMENT
START :

write code here
CODE ENDS
END START

Richa Upadhyay Prabhu 8086 Microprocessors



Implementing Standard Program Structure

Initialize Data segment register :

DATA SEGMENT
VAR1 DB 85H
VAR2 DB 32H
RES DB ?

DATA ENDS
ASSUME CS:CODE, DS:DATA
CODE SEGMENT
START :

MOV AX,DATA
MOV DS,AX
write code here

CODE ENDS
END START

Richa Upadhyay Prabhu 8086 Microprocessors



Implementing Standard Program Structure

Initialize Data segment register :

MOV AX,DATA
MOV DS,AX

These instructions load DS register with the upper 16 bits of the
starting address for the data segment.

Richa Upadhyay Prabhu 8086 Microprocessors



Implementing Standard Program Structure

Start writing the logic :

DATA SEGMENT
VAR1 DB 85H
VAR2 DB 32H
RES DB ?

DATA ENDS
ASSUME CS:CODE, DS:DATA
CODE SEGMENT
START :

MOV AX,DATA
MOV DS,AX
MOV AL,VAR1
MOV BL, VAR2
ADD AL,BL

CODE ENDS
END START

Richa Upadhyay Prabhu 8086 Microprocessors



Implementing Standard Program Structure

Start writing the logic :

DATA SEGMENT
VAR1 DB 85H
VAR2 DB 32H
RES DB ?

DATA ENDS
ASSUME CS:CODE, DS:DATA
CODE SEGMENT
START :

MOV AX,DATA
MOV DS,AX
MOV AL,VAR1
MOV BL, VAR2
ADD AL,BL

CODE ENDS
END START

Richa Upadhyay Prabhu 8086 Microprocessors



Implementing Standard Program Structure

Knowing DOS (Disk Operating System) Function Calls :

DOS and BIOS (Basic I/O System) are used by assembly language to
control the personal computer. The function calls control everything from
reading and writing disk data to managing the keyboard and displays.

In order to use function call, always place function number in register AH
and load other information into registers

Following is INT 21H : software interrupt to execute a DOS function

Richa Upadhyay Prabhu 8086 Microprocessors



Implementing Standard Program Structure

Knowing DOS (Disk Operating System) Function Calls :

TERMINATE PROGRAM AND RETURN TO DOS (DOS
FUNCTION 4CH)

MOV AH,4CH
INT 21H

A code of 00H in the AL register indicates normal program termination. Thus
the function is usually invoked as:
MOV AX , 4C00H
INT 21H

Richa Upadhyay Prabhu 8086 Microprocessors



Implementing Standard Program Structure

DATA SEGMENT
VAR1 DB 85H
VAR2 DB 32H
RES DB ?

DATA ENDS
ASSUME CS:CODE, DS:DATA
CODE SEGMENT
START :

MOV AX,DATA
MOV DS,AX
MOV AL,VAR1
MOV BL, VAR2
ADD AL,BL
MOV AH,4CH
INT 21H

CODE ENDS
END START

Richa Upadhyay Prabhu 8086 Microprocessors




